Mississippi State University
Scholars Junction

Theses and Dissertations Theses and Dissertations

5-8-2004
Dynamic memory management for the Loci framework

Yang Zhang

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation

Zhang, Yang, "Dynamic memory management for the Loci framework" (2004). Theses and Dissertations.
1588.

https://scholarsjunction.msstate.edu/td/1588

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junctlon It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
ation, please contact scholcomm@msstate.libanswers.com.

www.manharaa.com

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1588?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

DYNAMIC MEMORY MANAGEMENT FOR THE LOCI FRAMEWORK

By

Yang Zhang

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2004

www.manharaa.com

Copyright by
Yang Zhang

2004

www.manharaa.com

DYNAMIC MEMORY MANAGEMENT FOR THE LOCI FRAMEWORK

By

Yang Zhang
Approved:
Edward A. Luke Eric Hansen
Assistant Professor of Computer Science Associate Professor of Computer Science
and Engineering and Engineering
(Major Professor) (Committee Member)
Yoginder Dandass Susan M. Bridges
Assistant Professor of Computer Science Professor of Computer Science and
and Engineering Engineering, and Graduate Coordinator,
(Committee Member) Department of Computer Science

and Engineering

A. Wayne Bennett
Dean of the College of Engineering

www.manaraa.com

Name: Yang Zhang

Date of Degree: May 8, 2004
Institution: Mississippi State University
Major Field: Computer Science

Major Professor: Dr. Edward A. Luke

Title of Study: DYNAMIC MEMORY MANAGEMENT FOR THE LOCI FRAME
WORK

Pages in Study: 94

Candidate for Degree of Master of Science

Resource managementis a critical part in high-performaanguting software. While
management of processing resources to increase perfoensatie most critical, efficient
management of memory resources plays an important roldviimgdarge problems. This
thesis research seeks to create an effective dynamic memamggement scheme for a
declarative data-parallel programming system. In suctegys, some sort of automatic
resource management is a requirement. Using the Loci framkeuwhis thesis research
focuses on exploring such opportunities. We believe thgigtsean automatic memory
management scheme for such declarative data-parall@msggshat provides good com-
promise between memory utilization and performance. Intenhcto basic memory man-
agement, this thesis research also seeks to develop metiaidake advantages of the
cache memory subsystem and explore balances between matiiagtion and parallel

communication costs in such declarative data-parallehémsorks.

www.manaraa.com

DEDICATION

in memory of my grandma

www.manharaa.com

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Ed Luke, for his timmjggestions, and guid-
ance. He was very patient in explaining various difficult ogpts and helped point me in
the right direction when | was in hard times. It has been pleat work with him. Thanks
to Eric Hansen and Yogi Dandass for serving on my thesis céi@enand the comments
and suggestions they made on my work. Thanks to JunXiao Wkiridly providing the
FUELCELL program. Thanks to Ed Allen for his thesis template, whicideneny life
much easier.

| would also like to thank the Department of Computer Sciesnog Engineering and
the Engineering Research Center for providing financigpsupand facilities to my thesis
research. This thesis was created usifigid2-, GNU EMAcCS, Tgif, and Xmgrace. |
would like to express my appreciation to their authors fokimg these nice tools freely
available.

Finally special thanks to my parents, for their love and twrdus support.

www.manaraa.com

TABLE OF CONTENTS

Page
DEDICATION e e e e e e e e e e i
ACKNOWLEDGMENTS e e e e e e iii
LISTOFTABLES e e e e e s e e Vi
LISTOFFIGURES e e e Vil
CHAPTER
. INTRODUCTION. e e e e e 1
1.1 Background 1
1.1.1 ThelociFramework 2
1.2 TheProblems 3
1.3 TheHypothesisandGoal 5
. RELATEDWORK st 7
2.1 Allocation Technique, 7
2.2 Manual Memory Management 10
2.3 Automatic Memory Management 10
24 SUmMmMary ..o . e e e e 12
. THELOCIFRAMEWORK 14
3.1 ElementsoflLoci, 14
3.2 ThelociDataModel 15
3.3 Rule Specifications 17
3.3.1 Point-wiseRuleClass 18
3.3.2 Singleton and ParameterRuleClass 9 1
3.3.3 ReductionRuleClass 20
3.34 lterationRuleClass 20
3.4 TheScheduler 22
3.4.1 Dependency Graph Generation 22

iv

www.manaraa.com

CHAPTER Page

VI.

VII.

3.4.2 Decomposition 23
3.4.3 Existential Analysis L o oo 24
3.4.4 ScheduleandCompile. 25
3.5 Summary ... e e 25
BASIC DYNAMIC MEMORY MANAGEMENT 27
4.1 Memory Management as Graph Decoration 27
4.2 The MultilevelGraph 29
42.1 TheloopStructure 31
4.2.2 RecurrencelInternalRules L. 34
4.3 Graph Decoration Algorithm, 53
4.3.1 Single Rule Decoration 35
4.3.2 Single Graph Decoration 37
4.3.3 Multiple Level Decoration 39
4.4 SUMMANY . . . o o e e e e e e e e e e e e e 44
CHOMPING TECHNIQUE e 45
51 TheChompingldea 45
5.2 Searching for Chompable Subgraph 48
5.3 The ChompingSize i 57
54 Summary e e 57
SCHEDULING POLICIES e 58
6.1 Relations Between Memory Utilization and Communicat@osts . . . 58
6.2 Memory Greedy Scheduling 61
6.3 Summary e 67
RESULTS e e 68
7.1 The EvaluationMethods 68
7.2 IssuesinEvaluation L L 69
7.3 MeasurementResults L L L o 71
7.3.1 Loci Scheduler Statistics 72
7.3.2 Space ProfilingResults 74
7.3.3 Performance ProfilingResults. 18
7.3.4 Memory Utilization vs. CommunicationCosts 86
T4 SUMMATY Lo e e e 89

www.manaraa.com

CHAPTER Page

VIII. CONCLUSIONS s e s 90
8.1 ForFutureResearch 91
REFERENCES 93

Vi

www.manharaa.com

TABLE

7.3

7.4

7.5

7.6

7.7

7.8

LIST OF TABLES

Page
7.1 Statisticsof Loci Scheduler e 72
7.2 Statistics of chomped variables L 74
Space Profiling results foldELCELL on Linux 79
Timing results for BELCELL onLinux 83
Timing under Swapping forkEMmonLinux 84
Mem vs. Comm under dmm on LinuxCluster 86
Mem vs. Comm under chomping on Linux Cluster 86
Mem vs. Comm under dmm on Linux Cluster (asmallcase) 87
Mem vs. Comm under chomping on Linux Cluster (a smallcase. 87

7.9

Vii

www.manharaa.com

LIST OF FIGURES

FIGURE

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

Loci Architecture L.
Four Basic Database Constructs
Iterations and Iteration Label
The Dependency Graph
Decomposition
The Multilevel Graph: The Top Level
The Multilevel Graph: AnotherLevel
Loop Structure
Loop Structure: The Collapse Part
Loop Structure: The AdvancePart
Loop Structure: The ConditionalPart.
Single Rule Decoration
Single DAG Decoration
Placementof Recycling
The Chompingldea
Implementation of Chomping

Chomping PropertyOne

www.manaraa.com

FIGURE Page

5.4 Chomping Property TWo it 15
5.5 Chomping Property Three 51
5.6 Positions of Chomp Chainsin ADAG 56
6.1 Different SchedulingforADAG 59
7.1 Summary of Space Profiling on Linux (Chem-l) 75
7.2 Summary of Space Profiling on Linux (Chem-IC) 76
7.3 Summary of Space Profiling on Linux (Chem-E) 76
7.4 Summary of Space Profiling on Linux (Chem-EC) 77
7.5 Summary of Space Profilingon SGI (Chem-E) 77
7.6 Summary of Space Profiling on SGI (Chem-EC) 78
7.7 Summary of Performance Measurement fele@ on Linux 82
7.8 Summary of Performance Measurementfee@ onSGI 82
iX

www.manaraa.com

CHAPTER|

INTRODUCTION

1.1 Background

Numerical simulation is becoming increasingly importaie use simulations to ad-
vance our understandings of scientific theories or to imprawr capabilities in modern
engineering design. Most of these numerical modeling groklare inherently complex.
Due to the vast computing requirements of these simulatismgercomputers are often
needed to gain better and more realistic results. With tbenteadvances in microproces-
sor power and high speed interconnection networks, diggtparallel systems based on
groups of networked workstations have become availabley &he often calledlusters
Some of these clusters (e.g., the Beowulf project [15]) éaeting to compete with the
largest traditional supercomputing machines while offgra far better performance-cost
ratio. This has made numerical modeling much more econdiyifsasible than ever
before.

Unfortunately, while the hardware cost is dropping radycéihe software cost required
to utilize these resources is still substantial. Oftengpimming these clusters requires
message-passing-based paradigms, which are usuallyseatiol error prone compared to

traditional sequential programming. MPI is now theefactostandard for distributed mem-

www.manaraa.com

2

ory programming. Significant research has been conducte@veloping portable and
reusable parallel code. Object-orientation has been d irerecent numerical software.
The development of high-performance value classes [141@]7tends to provide better
abstractions for common mathematical constructs, whigediévelopment of application
toolkits [3] tends to reduce the complexities of coordingtioosely coupled components

in an application.

1.1.1 The Loci Framework

Loci [12] is a programming framework for high-performanaargputational field sim-
ulations. It seeks to reduce the complexity and cost agsakveith developing large-scale
scientific applications, such as computational fluid dyressbftware. The design of Loci
realizes that in developing large applications, a sigmifigeortion of complexity and the
bugs are from the errors in incorrect looping structuregroper calling sequences, or
incorrect data movements. Loci eliminates such internadmsistencies by using a run-
time deduction engine that generates the application aostiucture and data movement
operations automatically from component specifications.

Loci is a declarative programming framework. It changesahg that numerical soft-
ware is specified. In the framework, users do not need to @iplconstruct a program.
They only provide descriptions of attributes (data) andtthesformations between at-

tributes in terms of “rules,” as in logic programming. Théey query a particular result

www.manaraa.com

3

similar to a database query. Loci will automatically ded@machine-executable program

that satisfies the users’ request.

1.2 The Problems

In addition to the ease of application construction and gtged internal consistency,
automatic parallelization is another great strength ofiLothe underlying numerical
model does not have to refer to any explicit parallel executiThis is a natural “side
effect” of the Loci approach. It essentially demonstratesils capability to do intra-
application resource management.

Loci is targeted at numerical software. The type of problemesleled by these soft-
ware are usually complicated and large (in terms of compunak resource). Parallel
processing is used not only to speed up computing, but algaitbenough of the mem-
ory required by the simulation. Thus, besides computatipaaer utilization, memory
utilization poses another challenge in numerical simatati

As mentioned before, the software costs to utilize thesepcational resources are
substantial. Loci is a novel framework that reduces theaso#t cost dramatically. How-
ever, Loci does not presently address the memory problespiteeof its ease to perform
resource management. Loci currently uses a naive pretibacecheme. In this preal-
location scheme, all variables are allocated in advanceréd¢he program starts and are
deleted at the end of the program. Therefore the lifetimevefyevariable is equal to the

lifetime of the program. Part of the reason for using preatmn is that it tends to min-

www.manaraa.com

4

imize the computational cost associated with allocatidioywang for high performance.

But from the memory utilization point of view, preallocatiyields maximum memory
bound, which is not efficient. So the first question we havésig possible to do memory
management that provides reasonable compromises betwamomnand performance?
In other words, can we utilize the memory resources in a datla framework on the

same system to solve larger problems than before? Can wevactiiis goal without

unduly impacting execution time?

As the gap of processor and memory speed grows larger aret,lagche is becom-
ing increasingly important in performance critical apptions. Many theories and meth-
ods [5, 11, 13] have been devised to increase cache perfoemdroci is a declarative
framework, meaning users do not have direct control oveuregs. Thus, we have several
guestions concerning the cache: Can we identify the caghectssfor scientific applica-
tions in a declarative framework? Do we have a good managepediny in a declarative
framework to increase the cache performance for scienpfii@ations? Are there any re-
lationships between memory management and cache ublivaiin other words, do they
support each other, or do they conflict with each other?

We anticipate that memory management will introduce exasdscinto the Loci frame-
work. But parallel computing also has inherent overheadsh s communications. We
would also like to explore the relations between memory rgameent and parallel over-
heads. Does optimizing memory management require chatiggngarallel computation

schedule generated by Loci? What impact do these changehgerformance? Mem-

www.manaraa.com

5

ory management in a declarative framework certainly inices overheads, but can we
gain other rewards by having a good memory management séheme

Finally, can we characterize the common patterns of memtiligation in scientific
applications so that we can further our understanding of argmmanagement in general

and have insights into possible future research projects?

1.3 The Hypothesis and Goal

The hypotheses of this thesis research are:

¢ In a declarative data-parallel programming system suchoas lsome sort of au-
tomatic resource management is a requirement. We believéhére exists an au-
tomatic memory management scheme for such declarativersgghat provides a
good compromise between memory utilization and perforrmar®@pecifically, we
claim that such an allocation scheme will have reasonalvig¢inne overhead com-
pared to the preallocation strategy while also providingtieely significant im-
provements in memory utilization.

e We also claim that through careful resource managementt@imhtion, the execu-
tion speed of applications using dynamic memory managesat@me will outper-
form applications using preallocation strategy. We malahsilaim with the antici-
pation that the allocation scheme will take advantage afieacemory subsystems
in a manner that is not possible with preallocation.

¢ Additionally, we claim that there exists performance traffe between memory
utilization and communication costs in data-parallel pamgming systems. Due to
these trade-offs, a balanced approach will require intienag between the memory
and communication scheduling strategies.

The goals of this thesis research are:
e We aim to design an efficient and effective memory managesamntme for the
Loci framework. Particularly, we want to reduce the peak mgntequirement of

an application built using the Loci framework so that largesblems can be solved
on the same system.

www.manaraa.com

6

e We want to extend Loci’s intra-application resources managnt ability to include
the cache. And we want to evaluate the possible effects dfecaptimizations in
the Loci framework.

e We want to study the possibility of incorporating some statid run-time policies
into the Loci framework. We seek to improve Loci’'s adaptiypiso that users or

Loci itself can choose or switch to more appropriate actiomder different circum-
stances.

Loci provides an ideal platform for testing and evaluatioghe of the ideas for sci-
entific application memory management. We also hope thaugir this research we can
achieve a better understanding of designing declarataradworks for numerical soft-

ware.

www.manaraa.com

CHAPTER I

RELATED WORK

The memory system is a central part of modern computer athites. It has been
studied extensively in the past decades. Memory is useate ptogram instructions and
data. Any system has a limited amount of memory availables the efficient utiliza-
tion and management of the memory is important. Memory mamagt can be traced to
the hardware and operating system level, where the actyalqat devices are more con-
cerned. From the application program’s point of view, megmmeanagement supplies the
amount of space needed by the application and recycles nyehairis no longer needed.
Thus memory management at the application level involMesaion and recycle. This
section discusses some of the techniques that have bedopy@nd how they relate to

Loci memory management.

2.1 Allocation Technique

Generally, allocation is implemented as a library, suchesl oc in C. It is often re-
ferred to as aallocator. Usually at run time, the allocator receives large blocksiemory

from the operating system directly. Then the allocatoripants the memory, supplies the

www.manaraa.com

8

partitions for program requests, and later recycles thesually these storages are allo-
cated at the “heap.”

In conventional allocators, once a block of memory has bdenaed, the allocator
cannot move it or copy the contents to other places (compeantary). Also application
programs can request an arbitrary size memory at an aspitnae and return the memory
at any time later. Thus, fragmentation poses a seriousgmofir allocators. Often, there
are external fragmentation and internal fragmentationtei®al fragmentation refers to
allocator’s inability to grant requests from applicatialmgrams, although there is enough
total free memory. Because all the free blocks are small aeadeattered, no one free
block is large enough to satisfy the request. If the allacatpplies too large of a block
to a request, then the rest of the memory in that block caneaisied by others, causing
internal fragmentation.

Therefore, the typical techniques used to design allosata to choose a good place
for allocation and to have a good recycling management. llavbe ideal not to waste
space and time, but, in general, this is not possible to asehecause the application
program behaviors are hard to predict and the allocatorddsal with general programs.
Therefore, heuristics are often used in the allocator tdgthe placement policy. There
are many techniques and placement strategies, each watvitstrength and weakness.
Recycling is also similar to placement. Often coalescingrgimg fragmented memory

segments, is used to combine small free blocks into larges.dBut one has to make some

www.manaraa.com

9

trade-offs in determining when to coalesce. These algostare surveyed in Wilson et al.
[19].

Locality is another problem to be considered in designingllocator. Cache and
page misses can sometimes greatly affect the program pexfme. Some dynamic stor-
age allocation algorithms are designed to be aware of thaitpgroblem. The cache
performance of various allocation algorithms are studie@tiunwald et al. [9].

A conventional general purpose allocator cannot alwayfoparwell for all appli-
cations. As a consequence, special purpose, or custorsatls are often built for a
particular type of program. Frameworks [2, 4] are sometiosed to build custom allo-
cators. Custom allocators often take advantage of donpenHsc knowledge or certain
patterns in the allocation and can be designed to have agnesly low cost.

A widely used technique for optimizing dynamic memory altion is to use regions.
In a region based allocator, objects are often grouped isfzeaified region. The region
is allocated once, and inside it, object allocation is madadrough simple pointer ma-
nipulations. Objects in a region cannot be freed indiviyahstead the whole region is
destroyed. Region-based memory management often rasglb®d localities and flexible
policies. It is possible to use different allocators onefiént regions, and even garbage
collection may be used on some regions. Gay and Aiken [7,®judised adding region

support into languages directly.

www.manaraa.com

10

2.2 Manual Memory Management

The allocator is a low level design concern — rarely do progreers care about it.
From the programmers’ point of view, memory management ieemba strategy. Either
they explicitly manage memory, or the system automatidadiydles the management.

With manual memory management, the programmer has direttat@ver memory
recycling. This is done explicitly by usinfgr ee or di spose statements in the program.
The benefits of this approach are clear: Programmers gaotaiontrol over the memory
recycling, they have clear ideas of the whole picture, amdegones this is more efficient.

But in general, it is hard to manage memory explicitly. As plegram grows larger
and larger, managing memory becomes complex. It is harddp #ack of it. Thus, bugs
could be easily introduced into the program and are then tagfidd. The most common
errors are known adangling pointerandmemory leak A dangling pointer occurs when
memory is recycled too early, while the memaory leak occuremimnemory is not recycled.
Moreover, this manual approach does not scale well and doesntourage modular
programming in general. Because a large part of the codeeid tts handle memory
management, component interfaces are often polluted &gwaint and complex memory

management constraints.

2.3 Automatic Memory Management

Automatic memory management is the opposite of manual mgmanagement. It

is often a system service and is a general technique thamatitally recycles useless

www.manaraa.com

11

memory. Thus programmers are freed from bookkeeping dedaill can concentrate on
the fundamental programming requirements.

Garbage collection is the most prevalent automatic memanryagement technique. In
this technique, useless memory is considgyadbageand is automatically recycled by the
run-time system. Although in general it is undecidable Wubetn object is garbage or not,
in practice, approximations are often effective. Garbagkection is often incorporated
into programming languages since the object’s layout antsrare needed by the run-time
system. Many modern programming languages support gaduwdigetion, such adava
ML, Smalltalk etc. Some languages likeandC++ use manual management, but they
also have conservative garbage collection extensions.

In garbage collection, thgarbage collectoruns periodically to reclaim useless mem-
ory. Tracing or reference counting are often used to disisiglive and dead objects.
More advanced techniques like incremental collection aregational collection [18] are
also being used and studied.

Region inference is another form of automatic memory mamage. It is a rela-
tively new technique compared to garbage collection. It praposed by Tofte et al. [16]
and was implemented and studied in ¥k kit compiler. Instead of relying on run-time
garbage collection, region inference relies on static Eneganalysis. It is a compile-time
method and uses the region concept. The compiler analygesotirce program and in-
fers how many regions are needed, where they should be @thead deleted, and to

which region each allocation should be bound. The regietitife obeys stack discipline,

www.manaraa.com

12

thus eliminating the need for garbage collection. In addito being fully automatic and
safe, this approach also eliminates the run-time overhéatemory management as in
the garbage collection. In Aiken et al. [1], the stack resiwn of region lifetime has been
removed by solving a constraints problem. But in generdd, dtatic method is sensitive to
the program style: A small change in the source program nmeytre significantly differ-

ent inference of memory management. To date, this techigguy available for typed,

high-order, call-by-value language ML because ML’s cleamantics and the strong typ-

ing system made the inference possible.

2.4 Summary

This thesis focuses on the memory management strategig¢befdroci framework,
rather than on low level designs such as customize allagatboci is a coordination
framework, choosing and designing a custom strategy is nimgpertant than focusing
on custom allocators. They are issues on different levelsst@n allocators are sub-
sidiaries of the management strategy that fine tune memygoptand fragmentation is-
sues. Whereas Loci requires larger scale assembly managemeee similar to region
inference and garbage collection.

The goal and programming style of Loci makes manual memonyagement either
impossible or inadequate. It complicates the design of tgram, thus contradicting
Loci’s primary goal. Also, the declarative programminglstgneans memory cannot be

directly controlled.

www.manaraa.com

13

Loci targets scientific software. Scientific programs temdise all of the available
memory. Thus the primary goal of the strategy is to reduce#ak memory required so
that larger problems can be solved on the same system, egadire realistic simulations.
Reducing the peak memory requires reducing the memory usaged. Techniques like
garbage collection tend to have poor predictability beedhs allocation and deallocation
are decoupled. The recycling process completely reliesuartime decisions, and the
garbage collector may also consume additional space amd firherefore, the memory
bounds are hard to guarantee. Loci manages and assembbggptitation components.
It can easily perform global analysis to determine relaiops between computations
and variable lifetimes. Thus, coupling the allocation aedllbcation is possible. This
is important to obtain more stable memory bound and to reducdime management
overhead.

The candidate strategy is more like the region inferencéatktlt is automatic at the
application level and the framework “infers” approprialleeations and recycles. Regions
are not used in Loci because Loci is mainly a coordinatioméaork. It operates on
collections of entities and assembles different compantagether. It does not require

fine-grained allocation.

www.manaraa.com

CHAPTER I

THE LOCI FRAMEWORK

This chapter details some design principles, internatsires, usages, and character-

istics of the Loci framework.

3.1 Elements of Loci

Loci is a framework to build high-performance scientific kpgtions. Loci coordi-
nates and assembles applications from component spedoifisatThe fundamental pro-

gramming paradigm of Loci is declarative.

Fact Dat abase Rul e Dat abase

Cl\/bsh Posi ti ons) CCorrput e Vol ume)
CMash Topol ogy) C Solve Matrix)

............ Execut e and

D RIS el B D generate
results for

user query

User Query:
"sol ution"

Figure 3.1 Loci Architecture

14

www.manaraa.com

15

The general system architecture of the Loci framework canhagacterized in Fig-
ure 3.1. Loci uses two databases, Haet and Rule database, to store and manage the
descriptions and specifications from user. The fact datalvesntains the data for the ap-
plication, and the rule database maintains the transfoomabetween facts. The central
part of the system is thieoci schedulerwhich is a deductive engine that automatically de-
rives application control flow, data movement, and aggesgabmputations. The shaded
parts in Figure 3.1 depict the major internal steps of thedaler. From the user’s point
of view, developing an application using Loci is to build amaintain the fact and rule
databases; executing the application is to supply a qudrgtd

The following sections discuss each part in detail.

3.2 The Loci Data Model

The fundamental concept in Lociéstity. Entities represent sites where computations
may occur. For example, in a triangular mesh, a single entdy represent a triangle in
the mesh, or an edge, or a node. Loci automatically aggregat@putations on entity
collections, therefore abstractions of data are also otetla of entity collections. There
are basically four types of data models in Loci. Ttereconstruct provides an injective
mapping from entities to values. Tiparameterconstruct maps a collections of entities to
a single value. Thenapconstruct provides a way to model the relations betweetiesti

The constraintconstruct maps an attribute onto a subset of entities, whitihen used to

www.manaraa.com

16

constraint computations on that subset of entities. Fi§ellustrates the concept of the

four basic constructs.

store parameter map constraint
maps entities to maps many entities maps entities specifies a set of
values to a single value to entities entities
1-1 n-1 n-m
23
o———>0 o
o—o o—7 o—0 oY
o—o o—0 le®)

Figure 3.2 Four Basic Database Constructs

These constructs are used to formulate the fact databasdeberibes the problem.
Each fact provides some information of a subset of entiiies, (collection of entities),
such as the positions of nodes, or maps relating trianglesiges. Each of these facts
is given an identifier in the fact database, thus facts a@raferred to ayariables An
identifier consists of a name and an optional pair of curlgesawith iteratiohinformation
inside it. The general form of an identifieraq 7 + 6} wherea is the name and represents
the attribute of the fact; is the iteration level and is the iteration offset. For example,
ener gy{n+1} represents the attribuener gy at the next iteration of iteratar.

The store and map constructs can be think of as array-likéacwens, where store
holds values for entities and map holds the related entitiegntities. Accessing the
associated value for an entity in stores and maps may be amieg C++ array access

asener gy[e] , wheree represents an entity. The map construct can also be com-

1See section 3.3.4 for information on iteration specifiaatio

www.manaraa.com

17

posed with the store construct to provide an abstractiomdirection. For example,
energy[l eft[e]], in which, ener gy is a store and ef t is a map contains the
left neighbor of an entity (e.g., a cell) in a mesh. This meaasare indirectly accessing
the storeener gy. In Loci, this access aéner gy through the mappingef t is denoted

asl ef t —ener gy. The “—”" operator is used to represent the composition of maps and

stores.

3.3 Rule Specifications

In addition to the fact database, the rule database desdridesformations between
facts that are used by Loci to deduce new facts and to infeggrano control flows that lead
to the user query. These rules of transformation are funstar algorithms that operate
on facts or attributes and generate new facts or attribatety as rules for evaluating the
areas of faces, or for solving equations. These rules qunekto the fundamental steps
in computing the final result. In Loci, rules are denoted gsiharacter strings called “rule
signature.” Rule signature has the general fovead<—body, wherehead andbody
are lists of facts. This means the factshiead are generated by the application of this
rule, and the facts ibody are accessed during the evaluation of the rule. For example,
the rule signaturar ea<f ace2node—posi t i on represents that the value far ea
can be inferred provided when fadtece2node andposi ti on are present. Note,
heref ace2node is a map that connects faces to their defining nodes. Theregidhe

body of the rule signature, we are accessing the positiondés that defining a face. An

www.manaraa.com

18

important implication of a rule is that it can be applied tg given entity if the conditions
(i.e., attributes) in the body are met on the entity.

Loci categorizes different types of computations in sdéfentomputing into rule
classes. Analogous to the constructs in the fact databash, relle class has its own
semantic meaning and provides a template to formulate teelatabase. In essence, rule

class defines the composition and application of rules oeetlaction of entities.

3.3.1 Point-wise Rule Class

Point-wise rule class is the most common computation in Bpplications. The point-
wise rule class represents an entity by entity computati@attobutes. The rule is applied
on each entity. Point-wise computation produces new faxtatfributes). The new facts
are usually store constructs associated with the colledie@ntities that the computation
was applied on. The semantics of point-wise computationireg that an output fact can
only define one value per entity. It is treated as an error ifaribat one rules compute
the same attribute for the same entity. Recursion is allovgmbint-wise computation,

provided that the semantics are not violated. Point-wisepmdation can be described as:

f=rle) Ar(e) A---Ar(e) AN---Ar(ey) (3.1)

In which, r is the rule that applies on entity; | ¢ € [1,n]} is the collection of entities
that the computation operates agnmeans a single evaluation is independent of othérs;

is the resulting store fact that has doméin | i € [1,n]}.

www.manaraa.com

19

Note that parallel point-wise computation can be perfornpedvided that each pro-
cess has a subset of entitigs | p € [j,k]},1 < j < k < n. Each process performs

a subset of point-wise computation:

fo=r(ep) Ar(ep) A= Ar(ep,) (3.2)

Then the final fact can be obtained by:

f=hHUfU---UfU---Ufy (3.3)

3.3.2 Singleton and Parameter Rule Class

The singleton rule class is a special case of the point-wasepatation. Since the
collection of entities share the same attribute value sratdy need to be applied once. The
parameter construct is used to map entities to the attrimltee. Singleton computation

can be described as:
f=r(e) (3.4)

The definitions are the same as those in point-wise computaéxcept only exactly
one computation is performed. The resulting fgcis a parameter that has domain
{e; | i € [1,n]}. The singleton computation can also be parallelized. Siheee is
only one computation, each process just duplicates the etatipn and the resulting pa-

rameter fact.

www.manaraa.com

20
3.3.3 Reduction Rule Class

Reduction defines another computation abstraction. Inctemtucomputation, in ad-
dition to the point-wise computation, all resulting attrib values are “joined” together to

produce the final value. Reduction computation can be destas:

f=€edr(er)®r(e) ®---dr(e) - - dr(ey) (3.5)

In addition to the previous definitiors; is an associative and commutative operator that is
defined on the type of attribute returnedfye is an identity element of the operator,
f?is the resulting fact that has domdie; | i € [1,n]}.

Reduction can also be evaluated in parallel other thandeitht sequential evaluation
because of the associative propertysof Parallelization can be obtained by partition the

computation as:

f=Aear(e) ®r(e) @ Dr(e)} S {e@r(eins) Or(eira) ©---Or(en); (3.6)

The identitye is required in each partition to indicate the initializatio

3.3.4 lteration Rule Class

Iteration in Loci is defined by a collection of rule classdse build rule classes that
initiate the iteration; the advance rule classes that agb/#ime iteration; the collapse rule

classes that terminate the iteration. The specificationdsigtive. The build, advance,

>There are actually two types of reductions. The global rédnproduces parameter facts, and the local
reduction produces store facts.

www.manaraa.com

21

and collapse specifications are usually point-wise contjmutand the collapse condition
specifications are usually singleton computation.

Iterations are specified by adding an iteration label toalde identifiers. Iteration
labels are organized into a hierarchy that rooted at statyoimme (facts that do not iterate).
For exampley {n} represents variable in iterationn. The{n} is the iteration label for
variablev. The relationship between Loci iteration label hierarchg anperative loop is

shown in Figure 3.3.

................ [,

n,it,igs*
[_________ 4 t{n=0} =0
L e P do on=1, ...
I"I,it""v n,igs t{n} = t{n-1} + dt

: AT TSI
\\\\ ///// } s do igs=1,...
" done i gs
“\k. ey
T

done n

W
>
S
<
NANRY

S

Figure 3.3 Iterations and Iteration Label

For example, using rule signatures, we can specify an iberads following: a
build rule g{n=0}«<i ni t ; an advance rulg{n+1}<—q{n}, del t ag{n}; a collapse
rulesol uti on—qg{n}, CONDI TI ON(conver ged) . In the advance specification, the
g{n+1} means the value af in the next iteration (hence it is inductive definition). The
CONDI TI ON(conver ged) in the collapse specification determines the termination of

the iteration. Upon exit, the computationsdl ut i on is executed.

www.manaraa.com

22

Computation in an iteration can access values computethat éis own iteration level
or at parent levels. During the Loci scheduling phase, éegin lower iteration level are
automatically promoted up the iteration hierarchy. Fornepke, variables computed at
level {n} are communicated to levéh, i t } automatically. In addition, specifications
independent of iteration (i.e., specifications do not héemation labels involved) can be

promoted to any level in the iteration hierarchy.

3.4 The Scheduler

Given the specifications and descriptions in the databasespplication is formed by
searching for an effective computation that leads to the gsal. As in Figure 3.1, the
Loci scheduler is responsible for application synthesizbe current Loci scheduler is

organized into four phases.

3.4.1 Dependency Graph Generation

Given the fact and rule databases and the goal, the prograthesys discovers all
relevant rules that contribute to the solution, invoke thera proper order and infer the
domain for each rule and fact. A directed graph is used in tochodel the program
control structure and data movement. The first step in thedidbr is to search through
the databases and set up the dependences for all the rulesthibe applied and all the

variables that need to be generated.

www.manaraa.com

23

d<-a,c ﬁ’

c<-ac d<-b,c f

S

Figure 3.4 The Dependency Graph

A dependency graph is illustrated in Figure 3.4. In the grapth rules (computations)
and variables (facts or attributes) are represented aise®rtEdges in the graph connect
rules to variables or variables to rules, whereas rule te connection and variable to
variable connection do not exist. Usually there are edges the rule vertex to its output
variable vertices and there are edges from the variablécesrthat are in the rule body
to the rule vertex. In addition, Loci may add “internal” ralether than rules from the

database. These rules will be used in managing variablegiromand renaming.

3.4.2 Decomposition

Decomposition is the refinement of the first step. The depsrydgraph is further
reduced to a multilevel graph where each level is a directgdli@ graph (DAG). In this
step, certain computations such as iterations, condibongcursions are grouped into
subgraphs respectively. Analogous to structured progriagynthe resulting multilevel
graph (recursively) represents the structure and thealaitater of computations that will

lead to the solution.

www.manaraa.com

24

G=(V.E) [fagpssee
Jdsai
2 Gp= %5 d
c
ceac s
4<t£ c<-b J N eudie €
G=(VE

Figure 3.5 Decomposition

Decomposition is illustrated in Figure 3.5. The shadedaegn the above graph has
been identified as a certain structure. It is then groupemlargubgraph. The subgraph

appears as a vertex in the original graph, resulting in teegraph below.

3.4.3 Existential Analysis

Once all applicable rules and their orders are formed, theecbdomains for each rule
and fact are inferred in the existential analysis phaseekample, the rulp<r ho, R, T

implies the fact that has attribupewill have domain:

domain(p) = domain(rho) N domain(R) N domain(T)

www.manaraa.com

25

The existential deduction begins with the given facts, asiibivs the multilevel graph
until the goal is reached. Then a pruning phase starts frengdal, and works backward
through the graph. All the attribute domains that do not gbute to the final solution are

pruned in the pruning phase, resulting in an optimized cdatpn schedule.

3.4.4 Schedule and Compile

At this point, all information for program synthesis are deed and set by the Loci
scheduler. The multilevel graph is then recursively sclestland together with the rule
specifications in the database, a machine executable pndgréoen produced and put in

execution.

3.5 Summary

The Loci framework has numerous advantages. Using the rd¢igla programming
approach, the internal consistency of an application isaguaed. This feature greatly
facilitates the construction of large-scale and multighicary scientific applications.

Another unique feature of Loci is the automatic aggregatiocomputations. Users of
Loci can easily create abstractions using composeabletsigethe fine-grain level with
simple semantics, yet avoid the run-time cost associatdddynamic dispatch.

The declarative approach also makes automatic intra<gifn resource management
possible. In the current implementation, automatic peliattion is supported. The se-

mantics of aggregations are simple and clear for paradietin. The scheduler can nat-

www.manaraa.com

26

urally produce a parallel schedule, the underlying spextific does not have to refer to
any explicit parallelism. This resource management ghaliso facilitates the automatic
memory and cache management, which is the central themesah#sis research.

This chapter presents an overview of the Loci framework dsal provides necessary

background and terminologies for this thesis research.

www.manharaa.com

CHAPTER IV

BASIC DYNAMIC MEMORY MANAGEMENT

This chapter gives a comprehensive description of the desigl implementation of
an automatic memory management scheme for the declaratiaegodrallel programming
framework Loci. The design of the automatic memory managemevides the founda-
tion of this thesis research. All the following researclepts are built on top of the work
described in this chapter. The general guideline followethe design of the automatic
memory management scheme is the first hypothesis descritddhpter I: The memory
management scheme should be fully automatic, without aay ingervention; it should

also provide good compromise between memory utilizatiahagplication performance.

4.1 Memory Management as Graph Decoration

As discussed in chapter I, explicit memory management anllagje collection are not
adequate for Loci. A new specialized strategy must be dpeeloFor Loci memory man-
agement, being fully automatic means the framework itdedtitd handle proper memory
allocation and recycling. As shown in chapter Ill, Loci usi®cted graph to model the

application control flow and data movement. Thus the firstsil@c in designing the Loci

27

www.manaraa.com

28

memory management scheme is to incorporate the memory @isesg process into the
application control flow graph.

In the dependency graph, computations and variables atieaseand are connected
together to form a partial order. The graph is finally schedwnd compiled into a pro-
gram. Thus, a natural extension for including memory mameaye in the dependency
graph is to represent the memory allocation and recyclingeetices and insert them into
the existing dependency graph. Then when the graphs getileainproper memory man-
agement instructions are included into the application\aiidoe invoked in execution.
This process of including memory management instructinttsthe dependency graph is
referred to agraph decoration The automatic dynamic memory management for Loci
then becomes the graph decoration problem.

As shown in chapter Ill, Loci performs a decomposition afjenerating the depen-
dency graph, resulting in a multilevel graph. Both depeggaraph and the multilevel
graph represent the application control flow and data mowenbat the multilevel graph
is more structured than the dependency graph. Thus, thetevampossible graph decora-
tions: either decorate the dependency graph or decoratauhievel graph. Decorating
the multilevel graph turned out to be easier then decordatiegdependency graph. The
dependency graph is not acyclic, cycles are possible. Vifihilee multilevel graph, each
level is a DAG. Moreover, if the dependency graph is decdratiee decomposition al-
gorithm also requires adjustments for an optimized demoratThus, multilevel graph

decoration is chosen.

www.manaraa.com

29

The central problem in multilevel graph decoration is to fewrect and optimized
positions for proper memory allocation and recycling \e&$i. Since the graph has multi-
ple levels, information is possible to cross the boundargyauh level, a global analysis is
needed. The purpose of the global analysis is to traversautigraph hierarchy to collect
information and perform analysis for correct and optimidedoration of each subgraph.

The multilevel graph represents structured applicatiortrobflow. In Loci, a separate
C++ class hierarchy is dedicated for scheduling and congpilie multilevel graph. In the
global analysis, different types of traversal actions aeded. These actions are imple-
mented as a parallel visitor [6] class hierarchy. Therefoesv actions can be conveniently

added as concrete visitors.

4.2 The Multilevel Graph

This section describes the structure and contents of thélevel graph. In Loci,
the multilevel graph is a collection of subgraphs. Thesegsths are organized in a
graph hierarchy as levels. The multilevel graph has sevevals, each level is a DAG
and has vertices possibly represent another level of gregure 4.1 is the top level of
the multilevel graph of a simple Loci application. This gnais a simple DAG, but it
contains other graphs. All the circles in the graph are e(i.e., facts); the rectangular
shaped vertices are user supplied rules; the two octaghapksd vertices represent other

subgraphs. Any vertex that represents a subgraph is réfarras a “super node,” hence

www.manaraa.com

30

a prefix “SN” is added to the signature of each super node, tingber after “SN” is an

EUBON)

identifier for that node.

E<-B, C D<-A' B
N‘

sol ution<-E, LS1, LS2

Figure 4.1 The Multilevel Graph: The Top Level

Figure 4.2 shows the contents of the left super node in Figutgthe vertex with
signature “SN1:LS%-D,E"). Figure 4.2 is also a simple DAG, but it contains yebter
subgraph: the “SN4” super node. Only bottom levels in thetileukl graph are conven-

tional DAG, they do not contain other subgraphs.

www.manaraa.com

31

¢

| oopl{n=0}<-E

eneral | ze: l oopl{n}<-I oopl{n O

pronote: D{n}<-D

Figure 4.2 The Multilevel Graph: Another Level

4.2.1 The Loop Structure

Loop (i.e., iteration) is a major structure in Loci applicais. A loop contains condi-
tional structure and simple DAG structure. It could alsotaamother loops, hence nested
loops are allowed. Since loops are specified inductivéhgrefore, they have more com-
plex structures. In Figure 4.2, the “SN4” super node reprissa loop subgraph. The
overall structure of this loop is shown in Figure 4.3. Thedgonal shaped vertex with a
“looping” qualify is a Loci generated rule that ties eachtpdithe loop together.

Recall from section 3.3.4, iteration is specified indudiiMey three steps: The build-
ing step, the advance step and the collapse step. In Logis lace therefore decomposed
into two parts: the collapse part and the advance part. Thags are represented by two

DAGs in Loci. For the loop in Figure 4.3, the structures ofsta®AGs are shown in Fig-

1See section 3.3.4 for iteration specification.

www.manaraa.com

32

SN5: LS1<-1| oopl{n}, | oopl_fini shed{n}, CONDI TI (J\IAL(I oopl_ f| ni shed{n})

1 oopi ng: | oop1{n}, QUTPUT{ n}, $n{n} <- | oop1{ n+1}w

oopl{n+1}<-D{n}, | oopl{n} | oopl_fi ni shed{n}<-$n{n}

| oopl_fi ni shed{n}

Figure 4.3 Loop Structure

ure 4.4 (the collapse DAG) and Figure 4.5 (the advance DA@)indportant property of
the collapse DAG and the advance DAG is they may share vagablt they will never
share any rules. As in Figure 4.4 and Figure 4.5, no rulesreneed in two graphs, but the
variablel oop1{n} exists in both graphs. In addition to the loop decomposijtéota-
tion list is built for each loop. Since loop is specified inductivelgrigblel oopl{n+1}
represents the value bbop1{n} in the nextiteration. Therefore, at the end of each itera-
tion, the contents dfoop1{n} andl oopl{n+1} are swapped. The rotation list contains
variabled oopl{n} andl oop1l{n+1}, they maintain the history of the loop.

The collapse part of the loop also contains a conditionaysagh. Figure 4.6 shows the
conditional node for the collapse DAG in Figure 4.4. The d¢bodal subgraph represents
the computations for the final results of the loop, it is ordieduled and executed once,
upon the exit of the loop. When scheduling the loop, the pskkeDAG is always scheduled

first, if the condition fails, then the advance DAG is schedulln the last iteration of the

www.manaraa.com

33

| oopl_fi ni shed{n}<-$n{n}

SN5: LS1<-1 oopl{n}, | oopl_fi ni shed{n}, CONDI TI ONAL(| oopl_fi ni shed{n})

@

Figure 4.4 Loop Structure: The Collapse Part

|

oopl{n+1}<-D{n}, | oopl{n}

Figure 4.5 Loop Structure: The Advance Part

LS:I.< | oop1{n}, CONDI TI ONAL(| oopl_fi ni shed{n})

@

Figure 4.6 Loop Structure: The Conditional Part

www.manharaa.com

34

loop, the conditions are met, then the conditional node encbilapse part is scheduled.

The advance part is not scheduled in the last iteration.

4.2.2 Recurrence Internal Rules

Internal rules refer to rules that do not come from the rulial@ase. They are Loci
generated rules, such as the looping rule in Figure 4.3. H&aoewns glue that hooks the
graph together. Internal rules are represented as hexagatisprevious figures. Loci
has three types of important internal rules that will afflset memory management. They
are generalize rulespromote rulesand rename rules They together are referred to as
recurrence internal rules.

Figure 4.2 shows the generalize and promote rules. Thegkted to iterations. In it-
eration specification, the first step is the building speaifan. The generalize rule is used
to generalize the iteration label of variables. As in Figdr2, the initial iteration label
{n=0} is generalized tgn}. Recall from section 3.3.4, computation in an iteration can
access values computed at either its own iteration levet pagent levels. The purpose
of promote rule is to promote variables up in the iteratioer&ichy so that they can be
accessed in child iteration levels. There is also renanesybut they do not have special
signatures as generalize and promote rules. They can oaly determined through in-
ternal data structures. The purpose of rename rules isfioregicy. For example, given

a rename ruleA «— B. Itinstructs Loci to do in-place update: Variabfeoccupies the

www.manaraa.com

35

same memory location as varialdke the computation would erase the content®3aind
fill in the contents ofA.

Given a rulehead<body, the variables irbody are referred to asourcesfor this
rule; the variables ilmead are referred to agrgetsfor this rule. From the memory man-
agement point of view, the generalize rules, promote raed,the rename rules specify
a recurrence relationship between the sources and thedarige rule. In generalize and
promote rules, the sources and targets are actually the\samables. They share the same
memory location and the same contents in that memory latatie only difference is the
iteration labels. In rename rules, the sources and target® the same memory loca-
tion, but they do not share the contents, the existence ateswand targets is mutually

exclusive.

4.3 Graph Decoration Algorithm

4.3.1 Single Rule Decoration

Two internal rules are created to represent memory allocatnd recycling respectively.
The signature of the rule for allocation &L LOCATE: V< CREATE; the signature of the
rule for recycling is:DELETE: V—DESTROY. ALLOCATE andDELETE are qualifies for

the rules. The symbdl represents a variable list, i.e., all the variables to bacalied or
deleted. CREATE andDELETE are virtual variables, they do not serve any purpose. Their

existence are to satisfy the rule signature format only.

www.manaraa.com

36

The smallest unit for decoration in the graph is a rule. Ndiyna rule computes its
targets from its sources. From the memory management pbinew, memory for the
targets need to be allocated before the rule proceeds andehwry for the sources is
no longer useful when the rule finishes, they can be recydéeérefore, we can modify
the rule to include the memory management rules. Given atrategget s<sour ces,
Figure 4.7 shows the decoration. The memory managemers nole join the sources
and targets of this rule. All this specifies is a partial ord&then this rule is scheduled,
memory management and computation are then interleavei@, the allocation rule has
no incoming edges, it only points to other rules, while théetderule has no outgoing

edges.

ALLOCATE: t ar get s<- CREA

| target s<-sources |

DELETE: sour ces<- DESTRCN

Figure 4.7 Single Rule Decoration

Recurrence internal rules need to be handled speciallyusedhey are not real com-
putations. No memory management actions are required éareturrence internal rules.

Therefore, they do not require decoration.

www.manaraa.com

37
4.3.2 Single Graph Decoration

Given a DAG, a variable may be produced and consumed by rfeuttipes. To dec-
orate a DAG, the dependency relations must be consideredlldcate a variable, the
allocate rule must have edges that point to all the rulesatwatuce the variable. To delete
a variable, all the rules that consume this variable muse lelges point to the delete
rule for the variable. In this way, the dependence of memampagement operations and
computations can be set. Figure 4.8 shows an example of DAGrai#on. In Figure 4.8,
the right graph is the decoration of the left DAG. In the dation, all the hexagons are
memory management rules. Unshaded hexagons represeasdtiaiig shaded hexagons

represent recycling.

Figure 4.8 Single DAG Decoration

www.manaraa.com

38

However, there are two problems with single DAG decoratioma imultilevel graph.
The first one relates to the recurrence internal rules. Nlbynvee need to allocate every
target variable and delete every source variable in a DAGA&nay include recurrence
internal rules. As discussed in the previous section, no ongwperations are required for
a recurrence internal rule. Therefore, the targets of reoge internal rules are excluded
from the allocation list and the sources of recurrence imalerules are excluded from the
deletion list. They do not participate in memory management

In a multilevel graph, a DAG may also contain vertices thatesent a subgraph (i.e.,
super nodes). For efficiency concern, allocation shoulgpbagas late as possible and
recycle should be performed as earlier as possible. Therafa variable is only produced
by one super node, the allocation is deferred or transfeortite subgraph represented by
the super node. For the same consideration, if a variabkstscbnsumed by one super
node, then the recycling is deferred to the subgraph repteddy the super node.

DAG-ALLOC-DECO(gr)

1 wars < GETWORKINGVARS(gr)

2 grt — TRANSPOSHgr) > Transpose the graph

3 for vi € vars

4 do next «— SUCCESSORgrt, vi)

5 >> Get all the rules that produce this variable

6 rules < EXTRACTRULES(next)

7 > Get the number of super nodes and the total number of rules
8 snum «— GETSUPERNODENUM (rules)

9 rnum «— GETNUM (rules)

10 if not (snum = 1 andrnum = 1)

11 then> Create an allocation rule fat
12 alloc < CREATEALLOC (vi)

13 ADDEDGES(gr, alloc, rules)

www.manaraa.com

39

The procedure BG-ALLOC-DEcO performs the decoration for a single DAG. It in-
cludes all the discussions in this section. The procedlEBmeBORKINGVARS returns all
the targets in the graph but excludes the targets of reaererernal rules. The deletion

decoration algorithm has a similar structure thaxcBALLOC-DECO.

4.3.3 Multiple Level Decoration

If we traverse the multilevel graph in a top-down order, wethe order of compu-
tations. Ideally, we could traverse the multilevel grapp-ttown and apply algorithms
discussed in the previous section for each level. But realiGgiions are complex, so are
their corresponding multilevel graphs. Subgraphs in théilewel hierarchy are usually
tightly related to each other. Information usually crosgesboundary of a single level.
Simple DAG decorations as in the previous section are najute. Decoration of the

multilevel graph should also consider global information.

MLG-DECO(mlg)

1 levels < TRAVERSE(mlg)
2 for level < ToOP(levels) to BOTTOM(levels)
do vars < GETWORKINGVARS(level)
for vi € vars
do if REsPOND(level, vi)
then place «— COMPUTEPLACE (mlg, level, vi)
PLACEDECO(place, vi)

~No obk~hw

The general strategy to decorate the multilevel graph isvehia procedure MG-
Deco. We traverse the multilevel graph top-down. For each leaiéthe variables that

could be allocated or deleted are gathered. Then for ead@bl&rwe determine whether

www.manaraa.com

40

this particular variable is handled in the current levekdf a place for decoration is then
computed. Note, the place for decoration is not necessahgeiname level.

There are three key steps inLM-DEcO: the procedure GTWORKINGVARS, pro-
cedure RspoND and the procedure @1PUTEPLACE. The procedure GTWORKING-
VARS gathers candidate variables for allocation and deletioeéch level. It works the
same as the one in section 4.3.2 but with some augmentafldresone in section 4.3.2
only considers variable recurrence relations in a singl€&Dh a multilevel graph, the
variable recurrence relations could themselves become@ DAerefore, a preprocessing
step is performed for each recurrence relation DAG. A véeiétr allocation and a vari-
able for deletion are picked out from each such DAG, otheiabsées in the DAG do not
participate in memory management.

The procedure RspoNDdetermines whether a variable should be processed in a par-
ticular level. It uses the algorithm in section 4.3.2: if aighle is only produced or
consumed by a single super node, then the allocation antiadeie skipped in the current
level. In addition, an allocated variable set and a delesethble set are maintained. Once
an allocation or deletion decoration finishes, the corredpay variables are added into
these sets.

If an application has no iterations, the algorithm for detion in section 4.3.2 should
suffice, only the dependency of a single level need to be derel. Iterations added
complications to decoration. As a result, the level wheeediacoration of a variable to be

put is not necessary the same as the level where this varsgglecessed.

www.manaraa.com

41

First, as shown in section 4.2.1, the iteration has its overimal structure represen-
tations. Loop has a collapse part and an advance part, thpdaw® may share the same
variables. In addition, loop has rotation list. The vareshin the rotation list maintain
the loop history, they need to be allocated before the loafsst Therefore, the place-
ment of the allocation of rotation list is not in the loop gnaf is in the parent graph that
contains the loop as a super node. For example, in FigureéMsaevel contains a super
node “SN4”, which is a loop. Therefore, allocation of theatain list of “SN4” should
be placed at this level. When scheduling the loop, the cediggart is always scheduled
first, followed by the advanced part. Thus, the allocatiothefshared variables between
the two parts is placed in the collapse part, and the del@idhese shared variables is
placed in the advance part. Each collapse part has a camlitimde that computes the
final results of this loop, it is only scheduled and executeckegupon exit of the loop. The
recycling of the rotation listis therefore placed in thedibional node. In the last iteration
of the loop, the advance part is not scheduled, hence, tle¢iatebf the shared variables
is not scheduled. An additional recycling of the sharedaldes is therefore placed in the
conditional node in the collapse part.

Loops also put constraints on recycling of conventionaialdes (i.e., variables that
do not belong to loop rotation list and loop shared varigblegure 4.9 shows a possible
application control flow. There are two loops, which are eéstn the application. The
first loop is contained in a DAG as a subgraph and the innerdoogains a DAG as a sub-

graph. Variables1,v2,v3,v4 are allocated inlag1, loopl, loop2 anddag? respectively.

www.manaraa.com

42

dagl
g | oopl

| oop2

?LY

®
z

Figure 4.9 Placement of Recycling

All the variables are consumed lyg2 only (possibly through promotion). Therefore,
dag? is responsible for recycling of all the variables. The praeat of deletion o3 and

v4 could be withindag2, which means we could delet8 andv4 immediately afterlag2
consumes them. But the placement of deletion of variableandv2 cannot be inside
dag2. Althoughv2 is only consumed byag?2, it is allocated byoopl. When the applica-
tion runs,loop2 will be executed for several iterations, saligsg2. If v2 is deleted within
dag2, then in the next iteration dbop2 anddag2, v2 is no longer available. Thus, the
deletion ofv2 should be placed after all execution (i.e., iteration)l@§2. We choose to
deletev2 upon exit ofloop2. The placement is therefore in the conditional node within
the collapse part dibop2. For the same reason, the placement of deletionla$ in the

conditional node within the collapse partiobpl.

www.manaraa.com

43

MLG-DEL-PLACE (v, vLevel, mlg)

1 loops + GETPARENTLOOPSvLevel, mlg)
2 > Count the number of all parent loops
3 loopsNum «— GETNUM (loops)
4 if loopsNum =0
5 then return vLevel
6 else curLoop < BOTTOM(loops)
7 > Get the allocation oturLoop and all its sub-nodes
8 alloc < GETALLOC (cur Loop)
9 if v € alloc
10 then return vLevel
11 curLoop «— PARENT (cur Loop, loops)
12 alloc «— GETALLOC (cur Loop)
13 while v ¢ alloc and curLoop # NIL
14 do curLoop < PARENT(cur Loop, loops)
15 alloc < GETALLOC (curLoop)
16 if curLoop = NIL
17 then pLoop < ToP(loops)
18 else pLoop < CHILD (cur Loop, loops)
19 pLevel < CONDNODE(pLoop)
20 return pLevel

The algorithm for recycling placement of conventional ghte in the multilevel
graph is given in procedure Ms-DEL-PLACE. It takes three parameters: is the
variable to be deletedyLevel is the level that handles deletion requestjg is the
multilevel graph. MG-DEL-PLACE returns the level that the deletion of should
be put. For example, for2 in Figure 4.9, call to MG-DEL-PLACE (v2, dag2, mlg)
would return theconditional nodeof loop2. Procedure MG-DEL-PLACE works by
traversing the parent loop hierarchy starting frarhevel and examines the alloca-
tion of the loop hierarchy. The proceduree@ARENTLOOPS returns all the par-
ent loops starts fromwLevel. If wvLevel is itself a loop, it is also included in

the results. For example, for Figure 4.9 ARENTLOOPSdag2, mlg) would re-

www.manaraa.com

44

turn [loopl, loop2]; GETPARENTLOOPSloop2, mlg) would return [loopl,loop2] too;
GETPARENTLOOPSdagl, mlg) would returnNiL. Procedure GTALLOC returns the al-
location of the given loop and all its sub-nodes. The resulsed to test where the variable

v is allocated. Procedured®IDNODE returns the conditional node of the given loop.

4.4 Summary

This chapter presents the design and implementation oftameatic memory manage-
ment scheme for the Loci framework. The equivalence of mgmmnagement and the
multilevel graph decoration is first established. This s fimmdamental idea for memory
management in Loci, it enables seamless integration of #maaeny management and the
Loci framework. The basis and main problems in decoratiegthltilevel graph are then
outlined. The variable recurrence relations and varioysigations of the loop structures

are discussed in detail.

www.manaraa.com

CHAPTER YV

CHOMPING TECHNIQUE

This chapter describes a cache optimization scheme for ¢icé framework based
on the work of dynamic memory management in chapter IV. Thishe optimization
scheme is automatic, it does not require user interventidre objectives of this cache
optimization scheme are to further reduce the memory rement of an application and

also to increase the performance of Loci applications.

5.1 The Chomping Idea

The cache optimization for Loci is based on the ide&l@dmping or also known as
strip mining A general strategy for cache optimization is to partitiba tata into small
chunks that can fit into the data cache and arrange the acatesnpo these chunks so
that they stay in the cache as long as possible. Thus, datigrang and accessing form
the central theme in the chomping technique for cache opétiain in Loci.

In Loci, rules are elements of computation in an applicati@ales produce and con-
sume variables. In an application, only the user queriedbbas are useful result, others
are all intermediate variables, their existence are tortdmrie to the final solution only.

Normally, a rule is computed once over its domain and theetargriables are produced

45

www.manaraa.com

46

entirely. Since Loci variables are often containers thad herge amount of data, all the
intermediate variables are thus ideal candidate for datitipaing. In the cache opti-
mization scheme, we chomp the domain of a rule. Therefondedas no longer computed
once, instead, the computation is broken into small subpedations. In each of these
sub-computation, only part of the target variables are gpced. This implies only partial
allocation is required for all the intermediate variablBecause these partial allocations

could be potentially small, they enhance cache utilizasiod further reduce the memory

requirement.

D é A]
<7
o shift donai n
C<-B < repgéat
[Py
D<-C
g)

-

Figure 5.1 The Chomping Idea

The basic chomping idea is illustrated in Figure 5.1. In the chain,A is the given
variable,D is the final result of the chain, both andC are intermediate variables. Before
the chain starts, the entire memory required fors allocated, forB andC' only small

chunks are allocated. Then the rule chain is executediitehat In each execution iter-

www.manaraa.com

a7

ation, all the rules in the chain only execute over a sub-doemehe size of the domain
computed at each iteration equals the size of the allocatehoh forB andC'. D is there-
fore only partially computed. Then the domains of all thesuh the chain are shifted for
the computation of next iteration. The iteration of exesntierminates until the entir®

is produced.

Normally, the chain of rules is executed only once over theedomain of the rules.
With dynamic memory management, at least two entire coataineed to be kept in the
memory at one time. With chomping, the required memory tody# is the entire space
for D and part of the space fd8 andC'. We can choose the size of the chunksfand
C in memory, they can be less than one entire container. Torerethe entire memory
required by chomping is even less than the space used in aahoum with dynamic
memory management. If the topological structure of therchrules are “flat?, then the
memory savings are even more. On the other side, since th@kchunks forB andC'
are small, they can fit into the data cache and stay insideriimglan iteration execution
of the chain. Thus, the cache utilization is better thanlsingn of the rule chain. If the
cache benefit is greater than the overheads of additionahgeament in chomping, the
performance of the application will be improved.

The implementation of chomping borrows the idea of decontiposof the depen-
dency graph in the Loci scheduler. In each level of the nayél graph, all the chain

of rules suitable for chomping are identified first. Then eabhin is substituted by a

LA flat chain means a chain that has rules that consume most @hibmped variables as input. When
topologically laid out, the chain looks “flat.”

www.manaraa.com

48

ALLOCATE: D<- CREATE

DELETE: A<- DESTROY

CHEHHEHER I

Figure 5.2 Implementation of Chomping

special vertex. This allows smooth integration of chompamgl the dynamic memory
management scheme designed in chapter IV. As shown in Figrehe graph decora-
tion required by dynamic memory management does not have tavare of chomping.

Only in the execution phase, a special C++ class handles émagement and execution

of the chomp rule. The chomp rule is regarded as Loci inteural

5.2 Searching for Chompable Subgraph

Identifying rule chains that are suitable for chomping ie ttentral problem in the
implementation. Chompable rule chains do not cross the dmyrof a single level in the
multilevel graph. Hence, the identification and replaceinoémule chains occur in each
level of the multilevel graph.

In searching for chompable rule chains in each level, magsgmt a major complica-

tion. Recall from section 3.2, map models the relations betwentities; composition of

www.manaraa.com

49

map and store models indirect access of store containeexefine, any store container
that involves maps cannot be chomped directly. Because stitih maps means random
access of the store container. While in chomping, we onlgpece or consume part of a
container at each time. If a container needs to be randonssedgethen we cannot antic-
ipate directly which segment of domain needs to be allocet@thomping at each time.
Therefore, as a result, stores that involve any map need atidmated entirely.

The searching algorithm consists of three steps: a pregsowestep, a merging step
and an optimization step. In the first preprocessing stépaghbles in a DAG are catego-
rized into two classes: variables that are suitable for giing(i.e., chomping candidates)
and variables not suitable for chomping. As discussed pusly, because of the presence
of map, not all stores can be chomped directly. Those chogngandidates found in the
preprocessing step are the theoretical upper bound of thertomber of variables in a
DAG that can be actually chomped.

The following merging step forms all chomping rule chainsiAG. It works by
merging those chomping candidates found in the first step.nérging is based on several
properties in chomping.

e If a variable is chomped, then all rules connect to this VAeianust all been

chomped. Therefore, any two chomping candidate variablshare any rules can
be merged together to form a larger chain. This also impiasdnce the chomping

chain is formed, all intermediate variables inside therlaag invisible from outside
(i.e., no references to those variables from rules outditteeochain).

e The edited DAG that includes chomping rule chains must b#llacyclic. This
restricts the merging algorithm. At some step, we may beefbto discard some
chomping candidate variables in order not to create cycles.

www.manaraa.com

50

e Any non-chompable variable cannot be an intermediate biarie the chomping
chain.

These merging guidelines are illustrated in following epés:
Lt L2 | W ®

| 3>IAI<4 9@9
O

Figure 5.3 Chomping Property One

Figure 5.3 shows the invisibility of chomped variables ands. In Figure 5.3, variable

A'is chomped|], 2,3 and4 are rules that produce and consume variabléThe chomp

rule hides all of them, only variabld’, X, Y and Z serve as sources and targets of this

chomp rule.

Real Loci applications often have complex relations betweariables and rules. If

graph editing is not properly handled, cycles can be easgted. Figure 5.4 is such an

example. Variable3 andC are chompable, whil® and E are non-chompable variables,

D is an ancestor ofy. If we chomp bothB andC, the resulting graph will look as the

right one in Figure 5.4. A cycle is therefore formed. In thaese, we will have to discard

B, albeit it is a chomping candidate variable.

www.manaraa.com

51

Figure 5.4 Chomping Property Two

®—' 1 prﬂme
2 © N_E2

access
O (é -

Figure 5.5 Chomping Property Three

www.manharaa.com

52

Figure 5.5 shows another complication. In the gratand D are both stores and are
chomping candidates. RuBeaccess its source variabléthrough a map, thu€' cannot
be chomped. If we chomp both and D, C will become an intermediate variable of the
chomping chain. This will have problem even if we allocatentirely. Because rulg
accesg’ through a map, itis possible that the accessed region hdmeratcomputed yet.
In this case, we will have to discard eithBror D from the chomping chain.

MERGE-CANDIDATES (gr, candV ars)

1 chains < NIL
2 walidCandVars < candVars
3 while candVars # NIL
4 do begin < POP(candV ars)
5 rules < GETCONNECTEDRULES(gr, begin)
6 merge < TRUE
7 while merge
8 do merge < FALSE
9 mergedVars «<— NIL
10 for vi € candVars
11 do rs < GETCONNECTEDRULES(gr, vi)
12 if rules Nrs # NIL
13 then g < SUBGRAPH(gr, rules + s)
14 if not HASPROBLEM(g)
15 then rules «— rules + s
16 mergedVars < mergedVars + vi
17 merge <— TRUE
18 candVars < candVars — merged Vars
19 ¢ <+ SUBGRAPH(gr, rules)
20 POSTPROC(¢)

21 return chains

The algorithm for merging is illustrated in BRGECANDIDATES. Given a DAG and
all chomping candidate variables, the algorithm first delacariable from the candidates
and builds a smallest chain. Using this chain as the bagsalgorithm iterates through

rest of the candidates and merges them according to theligpgisieliscussed previously.

www.manaraa.com

53

The procedure WSPROBLEM tests for cycles and non-chompable internal variables. Pro

cedure BsTPrROC performs post processing on a formed chain before we finalteat

it. They are described in the following algorithms:

HASPROBLEM(g)

1
2
3
4
5
6
7

if CYCLE(g)
then return TRUE
ivs < GETINTERNALVARS(g)
pus «— ivs — validCandVars
if pus £ NIL
then return TRUE
return FALSE

PosTPROC(c)

cvs «— GETCHOMPEDVARS(c)
if SIZE(cvs) =1
then if HASPROBLEM(c)
then v < FIRST(cvs)
candVars «— candVars — v
validCandVars <« validCandVars — v
DISPATCHNOTIFY (v)
return
stvs «— GETSOURCETARGETVARS(¢)
rmus < stvs N candVars
candVars <« candVars — rmus
validCandVars < validCandVars — rmus
validCandVars < validCandVars — cvs
chains <« chains + ¢

DISPATCHNOTIFY (v)

1
2
3
4
5
6
7
8
9

rcs <— NIL

for ci € chains

do invs < GETINTERNALVARS(ci)
if v € invs
then rcs «— res + ci
cvs «+— GETCHOMPEDVARS(¢i)
candVars «— candVars + cvs

validCandVars «— validCandVars + cvs

chains < chains — rcs

www.manaraa.com

54

The purpose of BsTPROC is to prune thecand Vars set according to the formed chain.
If the merged chain only has one chompable variable, therthmer @ariables are merged
aside from the initial beginning variable. The chain is #iere not tested yet. It is then
checked by ASPROBLEM. Because MRGECANDIDATES does not perform other or-
ders of merging, if the chain failed in the testing, then timgle chomped variable inside
it is treated non-chompable from that time. The proceduisPBrcHNOTIFY is used to
signal already formed chains of this change. It is needed because this single vari-
able may already silently included into other chains. Itasgble because a rule could
have multiple targets. When we form a subgraph from one taogieer targets will also
been included into the subgraph. IndPATCHNOTIFY, all previously formed chains are
searched. If any of them contains this particular variablaminternal variable, then the
chain is canceled and all chomped variables are pushed tchtiraping candidates set
again.

If the formed chain has more than one chomped variables tliteis already a valid
chain. Because at least one merge happened and therefdhetbleain was tested. But
since during the merging, some chomping candidates mayenotdrged into this chain
due to fail to pass the ksPROBLEM test, these variables will become either source or
target variables of this chain. Then part of the rules conttethese variables will be hid-
den by this particular chomping chain and no other referetcéhese rules are allowed
from outside of this chain. Therefore, these variables aarbe included in any future

formed chains and are taken off from the chomping merginglickates set. Note the dis-

www.manaraa.com

55

tinction of candVars andvalidCandVars in MERGE-CANDIDATES. Variable candVars

is the chomping candidates set for merging, while the végiablidCandVars is used
inside HASPROBLEM for testing invalid internal variables in a chomping chaline dif-
ference between two variables is after tbe loop at line 10 in MERGECANDIDATES,

all merged chomping candidates in tloe loop are removed fromand Vars, while these
variables are removed from thelidCand Vars all together in ®STPROC (line 13). The
reason for this distinction is that during the merging pes;evhen a chain is checked
through HASPROBLEM, the already merged variables in this chain are still valid.a
sense thatalidCand Vars records the still valid variables that can be chomped when we
start a new merge at line 4 in BRGECANDIDATES.

In the merging step, we may discard some of the chomping datel due to cycles
and non-chompable variables being internal variables ¢faénc This is a combinatorial
searching problem, the algorithm described here does mfiirpean exhaustive search-
ing. Under certain circumstances, it may discard more k#ggthan it should. Thus a final
optimization pass is added with the hope of getting back safittf@ose lost variables. The
optimization works similar to the merging step. But we iterthrough all chains, if any
two chains share any chomping candidates, we may test amgrtieym together. Because
these “boundary” chomping candidate variables may be ovked in the merging. The-
oretically, the optimization algorithm may suffer the sapmreblem as in merging. They

may still miss valid chompings. But since we are testing aedging between chains, the

www.manaraa.com

56

problem space is reduced significantly, therefore the a®afar missing valid chompings
are greatly reduced.

The run-time complexity for the merging algorithm (inclgdehe optimization) is
O(n*(V + E)), wheren is the number of chomping candidates in a given DAG &n#
are the number of vertices and the number of edges of the @#&hrespectively. This
algorithm runs well in practical, both the running time ahe searching results are of

satisfactory for large Loci applicatioris.

A B
g e en &

Q

Figure 5.6 Positions of Chomp Chains in A DAG

After the search finishes, each chomping rule chain will desstuted by a special
chomp rule in the DAG. The merging step guarantees a singlsnphg rule chain sub-
stitution will not create cycle in the DAG (all chains havespad the cycle testing). The
merging step also guarantees two chains will not have ietdmns except for source or
target vertices. Therefore, the relations of two chainh@&@DAG can be categorized into

four possible cases as shown in the top part in Figure 5.6.bdttem part in Figure 5.6

2See chapter VI for results analysis.

www.manaraa.com

57

shows the graph editing results. We can conclude no cyclkésavintroduced by graph

editing.

5.3 The Chomping Size

The chomping size is the total allocation size for all of ti®mped variables in a
chain. In the implementation, it is chosen to be approxihgatalf the size of the data
cache. Because chomping is not exactly the same as traaitiatrix blocking. In chomp-
ing, the source and target variables are not chomped, thag be large and they may also
have access of data through maps. In the implementationstrecan also specify a par-

ticular chomping size before the program starts.

5.4 Summary

In this chapter, a cache optimization scheme is proposethéoLoci framework. It
is based on the idea of chomping, or strip-mining. The comdput of a rule in Loci
application is broken into multiple small sub-computatiomhese sub-computations may
help to improve cache utilization and reduce memory requéng. The algorithm that

discovers chomping chains is discussed in detail.

www.manaraa.com

CHAPTER VI

SCHEDULING POLICIES

This chapter presents a new scheduling policy for direatgdler graphs in Loci. This
new policy will improve memory performance of an applicatisith the cost of increased

frequency of communication points in the scheduled program

6.1 Relations Between Memory Utilization and Communicatia Costs

The fundamental strategy for memory management is outimetiapter IV. The re-
lations of managing memory and directed graph decoratiestablished. The multilevel
graph is decorated with memory management instructiortst bualy specifies a depen-
dency relation for the vertices. It is up to the schedulerdnagate a particular execution
order that satisfies the dependency relation. Differeneédaling results in different in-
terleaves of allocation, computation, and recycling. Ftbenmemory utilization point of
view, the order to schedule allocation and recycle affdugspeak memory requirement
of the application. An optimized schedule for memory usageraduce the application
peak memory requirement to an absolute minimum. Therefoexploring the relations
between memory management and parallel overheads, thechestion is: What impact

does optimizing memory management have on the parallel atatipn schedule?

58

www.manaraa.com

59

Loci is a data-parallel programming system. In a data-pEmatogram, each process
executes the same instructions on its own local data seer Aértain amount of work,
each process participates in a global synchronizationraevht processes synchronize
their work and exchange information. For a Loci applicatisynchronization is needed
for targets of pointwise rule. This means for every step m $sbhhedule, there will be
a barrier on target variables of all pointwise rules. Froms tommunication point of
view, different schedule may create different numbers oichyonization points. With
respect to parallel overhead, less synchronization isegesd. For an application, the
number of synchronization points does not change the totahve of data communicated.
But in a schedule with less synchronization, more computathappen at each step and
more variables are generated at each step. Thus we can ganepdata together in a

synchronization point and this helps to save the start-gpioaommunication.

Figure 6.1 Different Scheduling for A DAG

www.manaraa.com

60

With dynamic memory management, if we want to minimize thakpmemory re-
quirement for an application, then the resulting schedulkincrease the total number
of synchronization points. On the other side, if we want tmimize the total number
of synchronization points for an application, then the lasy schedule will use more
memory.

Figure 6.1 illustrates the effect of different schedulifgaoDAG. Schedule one is
greedy on computation in the application, while schedule isvgreedy on the memory
usage of the application. In schedule one, it schedulesoaBiple rules to execute in a
step. Therefore, more variables are generated, potegritiatease the peak memory usage.
Butin the first step, more variables can be grouped togetheing synchronization points.
In schedule two, only necessary rules are scheduled at éggghtlsen less variables are
generated, potentially reduce the peak memory usage. Butdh a schedule, variables
are spread over more scheduling steps, hence more synzdioni points are needed.
From Figure 6.1, we can see the total volume of data commiguda the same in two
schedules. Both are variablds B, E and F', but the grouping of communication for these
variables is different.

Therefore, optimizing memory management will create mgreronization points
in the application, hence more communication start-upscarstl result in a slow program.
On the contrary, attempting to minimize the synchronizapoints in an application will
result in a fast program with more memory usage. Thus, tadf$eexist in such system

and can be customized under different circumstances. Famnpgbe, if memory is the

www.manaraa.com

61

limiting factor, then a memory optimization schedule isfpreed. In this case, speed is
sacrificed for getting the program run. On the other handmétis the major issue, then
a computation greedy schedule is preferred. Users haveppdysmore memory for the

speed.

6.2 Memory Greedy Scheduling

The current scheduler in Loci is greedy on computation. Htesitles every vertex
in the DAG that can be scheduled in a step and therefore niesrthe synchronization
points. It will produce schedules similar to schedule onéigure 6.1. In order to examine
and verify the trade-offs discussed previously, an alteregcheduler is added to Loci. It
tries to minimize the memory usage of an application.

An optimal schedule for memory management is a combinafmaedlem and requires
exhaustive search in the DAG. The Loci scheduler is part efrtim-time system, thus a
fast algorithm is needed. We use a greedy algorithm in tleerative scheduler and rely
on heuristics to choose vertices to schedule in the DAG. Tgwrithm is described in the

following procedures:

www.manaraa.com

LocCI-GRAPH-SCHEDULER(gr)

24

grt — TRANSPOSHgr) > Transpose the graph
> Initialize priority, V is all vertices ingr
o> The smaller the weight, the higher the priority
for vie v
do plvi] < 0
PRIOGRAPH(gr)
sched < NIL > The Schedule
visited < NIL 1> Visited vertices set
> We start off from all source vertices in the graph
wait «— GETSOURCE(gr)
while wait # NIL
do ¢ «— ENQUEUE(wait)
vs < NIL
while ¢ # NIL andwvs = NIL
do vs « POP(q)
vs < GETVALID SCHED(vs)
if ¢ = NIL andvs = NIL
then error “graph has cycles”
else wait «— wait — vs
new «— GETNEW(vs)
wait «— wait + new
visited «— wvisited + vs
sched < APPEND(sched, vs)
return sched

GETVALID SCHED(vs)

1 walid < NIL

2 for vi € vs

3 do pre < SUCCESSOKgrt, vi)
4 if pre € wvisited

5 then valid <+ valid + v

6 return walid

GETNEW(vs)

1 new «+ NIL

2 for vi € vs

3 do next < SUCCESSORgr, vi)
4 new <«— new —+ next

5 return new

62

www.manaraa.com

63

PRIOGRAPH(gr)

1 > Memory greedy prioritize
2 > Initialization

3 [+« NIL

4 foruvieVy

5 do a < ALLOCNUM (vi)
6 d < DELNUM (vi)

7 0 «— TARGETOUTEDGENUM (v3)

8 | — APPEND(!, (vi, a,d, 0))

9 prio«—0

10 for i < 1to LENGTH(I)

11 do s « I[i]

12 if s.a=0

13 then p[s.vi] « prio

14 ERASE((, [[7])

15 prio «— 1

16 © Sort] according to ascending order of

17 SORT(l, ASCEND(a))

18 > Stable sor{ according to descending order f
19 SrABLESORT(/, DESCEND(d))

20 for i < 1to LENGTH(I)

21 do s « I[i]

22 if s.d #0

23 then p[s.vi] « prio
24 ERASE((, [[7])
25 prio «<— prio +1

26 > Sort] according to ascending order of
27 SORT(l, ASCEND(0))
28 for i« 1to LENGTH(!)

29 do s « [i]
30 pls.vi] « prio
31 prio «— prio +1

The procedure bci-GRAPH-SCHEDULER is a generic scheduling infrastructure for
Loci. It schedules the graph according to the weight of eaaitex. It only knows the
topological structure and the weight of vertice®dl-GRAPH-SCHEDULER starts off by
building the waiting set to schedule from all of the sourceiges in the graph. Then each

time, a priority queue is built for theait vertex set according to the priority of each vertex

www.manaraa.com

64

inside wait. The procedure EQUEUE forms the priority queue fowait. The scheduler
tries to schedule vertices with highest priority each tithases a PP function and checks
the dependency constraints until it finds a set of verticexhedule. Note, different than
usual priority queue, thed® function here pops all vertices with the highest priorityrfr
the queue, not just one at each time. If the input graph hdsgyhen eventually nothing
can be scheduled while we still have a setwaft vertices. The scheduler reports error in
that case. Otherwise, it appends the schedule with thetsdlgertex set in the previous
step and modify thevait set accordingly. Scheduled vertices are removed frant,
and new vertices reachable from the scheduled one are adlded:t The scheduler will
always terminate. If the input graph has cycles, eventub#yscheduler will discover the
error and stop. If the input graph is a DAG, the scheduler gdnshedules something at
each step. The graph has finite number of vertices. Therafarertain point, there are no
new vertices introduced into thea:t set, and the scheduler will stop when it consumes
all vertices insidewait. The run-time complexity of bcl-GRAPH-SCHEDULER largely
depends on the®OGRAPH function at line 6.

With this scheduling infrastructure, the computation gseschedule and memory
greedy schedule only differ from how to provide the vertepogpty. The current com-
putation greedy scheduling can be viewed as havingl@BRAPH function that sets all
vertices with the same weight.

The algorithm for the memory greedy scheduling relies onue of heuristic. The

heuristic is designed to try to minimize the memory usageaahescheduling step. It

www.manaraa.com

65

should also be simple enough that does not introduce exeesgerhead to Loci. The

basic idea of the heuristics are illustrated as following:algiven graph, variables and
rules that do not cause memory allocation have the highesttgrand are scheduled first.

They are packed into a single set in the schedule. If no sudites can be scheduled,
then we must schedule rules that cause allocation. The némgaiules are categorized.
For any rule that causes allocation, it is possible thatsb alauses memory deletion.
We schedule one such rule that causes most deletions. lipheuttiles have the same
number of deletion rules attached, we schedule one tha¢sdesest allocations. Finally,

we schedule all rules that do not meet the previous testsabaetime with the fewest

outgoing edges from all of its target variables. This is base the assumption that the
more outgoing edges a variable has, the more places willibhsumed, hence the longer
lifetime will this variable have.

The algorithm is shown inRoOGRAPH. We start off from building a list that contains
statistical information for every vertex. For each rules ttumber of allocation rules at-
tached, the number of deletion rules attached, and the nuaflmeitgoing edges for all
of its target variables are collected respectively as shogiween line 5 and line 7. For
variables, all these numbers are jasfThen we looping over the list, for any vertex with
no allocation number, we set the highest priority for it. ¥laél get assigned with priority
0 because we want them to be scheduled together. We also reheseefinished vertices
from the list. We then sort the list. The first sorting is basedthe ascending order of

allocation number, and the second sorting is based on dgisceorder of deletion num-

www.manaraa.com

66

ber. This is the same meaning as in the previous descripfitredheuristic. Because at
this stage, all vertices in the list cause allocation, wetd@aschedule the one that lead to
most deletions and has fewest allocations if there are pi@hertices with same number
of deletions. Stable sort is required in the second sortitkgép the relative order from the
first sort. After sorting, we looping over the list again, &y one with non-zero deletions,
we assign priority to it. Note, this time the priority is ieased one at a time because we
only want one vertex to be scheduled at each time from now @ad¥in remove finished
vertices from the list. Finally we sort the list accordinghe outgoing edge numbers and
set corresponding weight for each remaining vertex. Therdlgn terminates with all
vertices processed. It has a worst case run-time complekiy\” + £ + VigV') and best
case run-time complexity @d(V + E). V and E are the number of vertices and edges for
the input graph respectively. In worst case, the sortingidatas the runtime.

When counting numbers of allocation rules and deletiorsrudaly allocate and delete
of store variables are counted. Stores are the only noialtsariables in present Loci.
This scheduling tends to minimize memory usage, but it alseeases the synchronization
points. Because for rules that cause allocation, only otieesh are chosen at a scheduling
step. The target variables are distributed more sparségiachedule, and therefore more

synchronization points are needed.

www.manaraa.com

67

6.3 Summary

This section briefly presents the relations between memanyagement and parallel
communication costs. An optimized schedule for memory esadj likely increase the
parallel communication costs. On the contrary, an optichashedule for communication
will likely increase the memory bound for an application. esk trade-offs can be cus-
tomized to different application requirements. An altérreamemory greedy scheduler

for Loci is also presented in detail in this chapter.

www.manharaa.com

CHAPTER VII

RESULTS

This chapter presents the experimental results of the dgnameamory management

scheme proposed in this thesis. Some analyses are alsocagitke results are presented.

7.1 The Evaluation Methods

The evaluation of the dynamic memory management schemest®ia$ four parts:
performance evaluation of algorithms, space profilingfgrerance profiling, and charac-
terization of the trade-offs in memory utilization and coonmcation costs, if any. First,
we conduct a measurement on the performance and behavibitioé algorithms devel-
oped in this thesis. Then, in space profiling, the benefitssofgudynamic memory man-
agement are measured in detail. This includes how much spat®y can be achieved by
using dynamic memory management, chomping, and memorgygsaeduling respec-
tively when comparing with the preallocation scheme. Irfgrenance profiling, the run-
time performance of Loci applications are measured undf&rednt memory management
configurations. This examines the run-time overhead asatiwith dynamic memory

management, the performance improvements due to cachétbéyaising chomping. In

68

www.manaraa.com

69

the last part, the parallel performance versus memory usagmeasured under different
schedulers.

The evaluation is mainly based on two applications: tlEZ program and the 6~
ELCELL program. Both of them are chemistry solvers but for diffégmoblem domains.
Both applications are developed using the Loci frameworkae being used to solve real
world engineering problems.

The space and performance profiling are conducted on botestgl and parallel
architectures. The trade-offs between memory utilizaod communication costs are
measured on parallel machines. For sequential testingGdrC8allenge 10000 XL (8
195MHz R10000 processors with 2 Gigabytes of RAM), an IntitRim 4 PC (2GHz
with 512 Megabytes of RAM, running on Linux), a single nodeaonIBM Linux Cluster
(see below), and an Intel Pentium Il PC (1.2GHz dual promeswith 1.2 Gigabytes of
RAM, running on linux) are used. For parallel testing, an $3&gin 2000 (64 195MHz
R10000 processors with 32 Gigabytes of RAM) and an IBM Linuxsger (total 1038
1GHz and 1.266GHz Pentium Il processors on 519 nodes, &ig&bytes of RAM) are
used. On the SGI machines, the applications are compiled tise SGI CC compiler. On

Intel PC, the GNU g++ compiler is used.

7.2 Issues in Evaluation

Loci uses the system allocatoml | oc at the lowest level. Usually the system call

br k is used insidaral | oc to ask for heap space from the operating systemil. | oc

www.manaraa.com

70

usually asks for a large block of memory frdm k call, and then it partitions the block
and supplies space for application requests. The samegtriatused when freeing mem-
ory. mal | oc aggregates large enough amount of blocks and thenloakido shrink the
heap space. This caching strategy is helpful for performamprovement because k is

an expensive system call. In the GNU C library, by defauitl | oc requests large allo-
cation through themap call to find addressable memory space. The difference frokn
call is that the memory allocated througirap, once freed, is immediately returned to the
operating system. The advantage of this approach is thatpsho reduce memory frag-
mentation and makes large memory available to system f&uefrom the measurement
point of view, this introduces unpredictable operatingsysoverhead into the program.
We try to avoid such random overheads in the measurementefbne on all the Linux
testing platforms, we disabled tmerap mechanism imal | oc so that it always uses
br k call to ask for memory. We also set thek return threshold to be large enough that
mal | oc never calldr k to return memory to the operating systém.

In space profiling, factors such as additional message miufftne program, memory
fragmentation, and the quality of memory allocator, ettatiect the measured memory
bound. In order to know the exact benefit from dynamic margagiemory for variables
in applications, we also perform bean-counfiog memory usage. A memory profiler is

implemented for Loci. When activated, the memory profildtemis heap size information

1This is done by setting the environmental variablé#ALLOC_TRI MTHRESHOLD. and
MALL OC_MVAP_MAX_.

2By bean-counting we mean tabulating the exact amount of mgrequested from the allocator.

www.manaraa.com

71

and also computes bean-counting memory bounds. Both reasurement and bean-

counting measurement results are presented in the folgpsentions.

7.3 Measurement Results

In the following tables and figures, if not otherwise spedifiapplications running
with preallocation is abbreviated pee, applications running with dynamic memory man-
agement is abbreviated dsxm and applications running with dynamic memory manage-
ment and chomping is referred to esomp(note the chomping is used together with the
dynamic memory management). Computation greedy schesldblireviated asomp
greedy and memory greedy schedule is abbreviatetham greedy Real measurement
number is referred to agal, and bean-counting number is referred tdasThe CHEM
program can be configured to run under four different modeglicit time method, im-
plicit time method with chemistry model, explicit time meth and explicit time method
with chemistry model. They are abbreviated ag®-1, CHEM-IC, CHEM-E, and GHEM-

EC respectively. Measurements are conducted for all foudemoBecause the implemen-
tation of the RUELCELL program is different than theHEM program, we are only able to
chomp one variable for the testing problem. Therefore, waataneasure the chomping
option for the WELCELL program. In the space and performance profiling sections, we
mainly present the sequential measurement results. Bedangs is data-parallel, in the
parallel case, each process executes the same programsiihlier dataset. The parallel

results are essentially the same.

www.manaraa.com

72

7.3.1 Loci Scheduler Statistics

Because Loci does the assembly and scheduling all at rum-aimything added into
Loci should not severely degrade the performance of Loceéduler. Therefore we first
measure the run-time performance and behavior of the #hgasideveloped in this thesis

in addition to application performance measurements.

Table 7.1 Statistics of Loci Scheduler

unit: second CHEM-I CHEM-IC CHEM-E CHEM-EC
dmm decoration | 0.5188 0.5402 0.3540 0.3656
searching and
forming of 0.3595 0.3760 0.2620 0.2749
chomping chains
comp greedy

schedule 0.0101 0.0103 0.0070 0.0071
mem greedy

schedule 0.1270 0.1350 0.0682 0.0693
total Loci

schedule tim& 10.8339 10.9706 7.4180 7.5380

aThis is the total time when using comp greedy schedule, usieig greedy schedule will have a similar
result. This total time is the sum of Loci graph processintetand the existential analysis time.

Table 7.1 shows the run-time performance for various stafeke Loci scheduler
under four different configurations for the4€mM program. This measurement is conducted
on a 2GHz Intel Pentium 4 PC with Linux . The problem chosemésgame as the one
used in the following space profiling and timing. Althouglstls a modest size problem

that could be run on a single processor, it is of typical caxipy in applications built using

www.manaraa.com

73

Loci. The graph processing part of Loci only depends on thmepiexity of applications
(i.e., the number of rules and variables involved), not thrabfem size (i.e., the size of
variables). The algorithms discussed in this thesis betorte graph processing part of
Loci. Hence, they are independent of problem size.

From Table 7.1, we can conclude all algorithms developekigthesis only add small
amount of overhead to the Loci scheduler. Typical runtimieasfi applications range from
several hours on a single processor to several days on larggb machines. Therefore
this amount of overhead is negligible. We also noticed thenorg greedy schedule al-
gorithm usually runs an order of magnitude slower than thmepmdation greedy schedule.
This is because more complex heuristics are used in the nysgreedy scheduling. While
the computation greedy scheduling only performs pure gpapbessing, or it could be re-
garded that each vertex has the same weight.

We next perform a measurement on the outcomes of the chorsgarghing and form-
ing algorithm discussed in section 5.2 chapter V. Becausaiimany chompable vari-
ables are missed by the algorithm, we cannot get sufficiemfiidrom chomping. Thus
the quality of this algorithm plays an important role in themping technique.

Table 7.2 shows the results of the algorithm for the samelpnolised in Table 7.1.
In the table, “total variables” refers to all the variablbattare allocated in the program,
this does not include any input variables. The “upper bouihndhompable variables”
is the number of chomping candidates in the program. Thiseesgmts an upper bound

on the number of variables that can be chomped in the progkoowever, relationships

www.manaraa.com

74

Table 7.2 Statistics of chomped variables

CHEM-I CHEM-IC CHEM-E CHEM-EC
total variables 192 196 162 166
upper bound
of chompable 47 49 49 51
variables
number of
chomped variables 40 42 44 47
% of the size of
chomped variables 32.25 32.39 44.74 51.03
in total variables

between rules and variables may force us to discard somepafaewvariables. This is the
major task performed in the searching and forming algoritie do not know whether
the results of our algorithm for this problem are optimalt they are good enough for
practical use. Considering the size of the variables deeal by the algorithm, from
the memory management point of view, doing chomping aloneldveave considerable

amount of memory.

7.3.2 Space Profiling Results

The main objective of having memory management is to saveangerin comparing
the memory bound, the measurements of application runnitigpkeallocation serve as
the baseline. Preallocation could be regarded as the uoedof memory usage for a

program. For all the measurements in space profiling, we askdiault 128KB chomping

www.manaraa.com

75

size for all applications running with chomping. Becausarfithe space profiling point of

view, the chomping size does not affect the memory bound wtiaenble way.

Summary of Space Profiling on Linux
Chem-I

100

94.4 dmm comp greedy (real)
EEEEER dmm mem greedy (real)
[N chomp comp greedy(real)
77555 chomp mem greedy (real)
dmm comp greedy (bc)
82.3 dmm mem greedy (bc)
@ chomp comp greedy(bc)
chomp mem greedy (bc)

95

90

85

80

75

69.4

70

66.2

65

60

% of Space Used Comparing to Preallocation

55

50

Figure 7.1 Summary of Space Profiling on Linux (Chem-I)

Figure 7.1 to Figure 7.4 summarize the space profiling redalt CHEM on Linux.
They are performed on a single node on the IBM Linux Cluster.

Figure 7.5 and Figure 7.6 summarizes the space profilindtsefeu CHEM on SGl.
The reason that we do not include the results fae@-1 and GHeM-IC is that we noticed
on SGI, when GEM running with dynamic memory management and dynamic memory
management with chomping under these two modes, the reaumeshmemory usages
exceed the bound of preallocation significantly. Duringrtteasurement, we also noticed

when running under these two modes with “dmm” and “chomp&, tiemory bound will

www.manaraa.com

76

Summary of Space Profiling on Linux

Chem-IC
100 [.
C | dmm comp greedy (real) 7
_5 95 o 92.4 EFEEEEH dmm mem greedy (real) E
bS] o [T chomp comp greedy(real)]
‘=5’ 90 - [chomp mem greedy (real) R
s E 85.5 |E dmm comp greedy (bc)]
a 85 dmm mem greedy (bc) i
e - gazsd chomp comp greedy/(bc)]
E’ 80 i chomp mem greedy (bc) 1
g »]
e 75 i
S C]
O 20 C]
°
o C 67.3]
2 c]
o 65[i
Q
@ r]
Q r 3
O 60| i
S 3]
S 5[]
50 J

Figure 7.2 Summary of Space Profiling on Linux (Chem-IC)

Summary of Space Profiling on Linux

Chem-E

100 -]
95 F ~ 1 dmm comp greedy (real) 3

S £ R dmm mem greedy (real) 3
ks a0l [chomp comp greedy(real) R
;6’ E [ed] chomp mem greedy (real) E
8 85 84.9 dmm comp greedy (bc) .
T E = dmm mem greedy (bc) E
2 8o i chomp comp greedy(bc)]
2 c e chomp mem greedy (bc)]
g ot 72.1 1
£ c 3
8 70 i
) o 3
$ es[]
=} o 61.4 E
g 6o 293 i
&]
5 S5t 7
X o]
< s0[]
45C =

Figure 7.3 Summary of Space Profiling on Linux (Chem-E)

www.manharaa.com

100

95

90

85

80

75

70

65

60

55

% of Space Used Comparing to Preallocation

50

45

Summary of Space Profiling on Linux
Chem-EC

83.9

1 dmm comp greedy (real)
EEEEE dmm mem greedy (real)
[T chomp comp greedy(real)
[EE5557] chomp mem greedy (real)
dmm comp greedy (bc)
=~ dmm mem greedy (bc)
Fnsnng chomp comp greedy(bc)
chomp mem greedy (bc)

52

[T
[AARAAY
SESSSS

77

Figure 7.4 Summary of Space Profiling on Linux (Chem-EC)

100

95

90

85

80

75

70

65

60

55

% of Space Used Comparing to Preallocation

50

45

Summary of Space Profiling on SGI
Chem-E

93.4

~ 1 dmm comp greedy (real)
EFEEEE dmm mem greedy (real)
[T chomp comp greedy(real)
[ed] chomp mem greedy (real)
dmm comp greedy (bc)

chomp comp greedy(bc)
s chomp mem greedy (be)

64.4

63.9

Figure 7.5 Summary of Space Profiling on SGI (Chem-E)

www.manharaa.com

Summary of Space Profiling on SGI
Chem-EC

100

96.1
95

90 88.5

dmm comp greedy (real)
FFEF dmm mem greedy (real)
[IIMIIm chomp comp greedy(real)
e chomp mem greedy (real)

85

H | =23 dmm comp greedy (bc)

80

dmm mem greedy (bc)
chomp comp greedy(bc)
chomp mem greedy (bc)

75

70

67.8

65

60

55

% of Space Used Comparing to Preallocation

50

57.5

...........

45

78

Figure 7.6 Summary of Space Profiling on SGI (Chem-EC)

gradually increase as the program runs. The reason fortitht@mal behavior is still under

investigation, and we leave it for future work. Our currexplanation is that the allocator

from the SGI compiler has serious fragmentation problengeuthese circumstancés.

Fragmented memory cannot be reused and is not returned &y#hem, thus it has to

repeatedly ask for memory from the operating system whidiin causes the memory

usage increase as the program runs.

Table 7.3 shows the space profiling results of tbg ECELL program on the Intel Pen-

tium 111 PC. We do not have a compilation of th&JELCELL program for SGI, therefore

we only give measurements on Linux.

30ur code has passed a memory debugger under Linux.

www.manaraa.com

79

Table 7.3 Space Profiling results fov ELCELL on Linux

comp greedy mem greedy
unit: MB real bc real bc
pre 268.247 179.163 268.876 179.163
dmm 212.446 98.448| 208.110 98.448

From the results, we can conclude using dynamic memory negnegt helps to save
memory. For GIEM, the saving ranges from roughiftc—50%, depending on program
configurations and the memory management options.

We also noticed when using “dmm” alone, the memory savingdygically not sig-
nificant, especially when using computation greedy schieguHowever the theoretical
numbers (the bean-counting results) indicate a more agjgeasutcome. Our explanation
to this is that the quality of allocator matters. For usingifd” alone, the allocations tend
to be large, the fragmented memory cannot be reused andscaulasge peak memory.
The results of “dmm” with memory greedy scheduling and “cipdrsupport this argu-
ment. We noticed a significant reduction of peak memory whsemg.f‘chomp” compared
to the corresponding case under “dmm” alone. While theinbeaunting numbers show
much smaller gaps. In chomping, not only does the prograrswue less memory, but
also the allocation for chomped variables tend to be smakyTherefore are less affected
by memory fragmentation, since small blocks could posdiblyto fragmented memory.
From the profiling results, we can see the bean-counting eusrfor “dmm” with com-

putation greedy scheduling and “dmm” with memory greedyesciing typically differ

www.manaraa.com

80

within 5%, while the differences between real measured numbers agdlyisnore than
10%. Because the memory greedy scheduling is more aware of theorgaisage, the al-
location and deletion patterns are different than thoskercomputation greedy schedule.
This difference also contributed to alleviate the memoagfnentation problem.

Table 7.3 suggests a large amount of memory is wasted inulEe@ELL program,
even under preallocation. In “dmm,” the bean-counting paaknory is only around6%
of the real measured peak. Part of this is due to the use abhextolver in the BELCELL
program. The external solver may use and manage its own nyearat we did not count
that part. We also noticed, for theJELCELL program, memory greedy scheduling yields
no obvious difference than computation greedy scheduliftgs also indicates that the
design of a program affects the memory bound. In order to miae the advantage of
dynamic memory management, it is suggested that one shgutuse more variables in
a program with approximately identical size and relativagrt lifetime.

From the space profiling results, we conclude a good allodatoecessary to take
advantage of the dynamic memory management. The fragmanpabblem significantly
affects the memory bound and the practicability of dyname&mary management. But
we also discovered that chomping can greatly reduce the myeiragmentation problem
under most cases. The reason is that chomping reduces tHeenwoimlarge allocations
and the chomped variables can fit into fragmented memory eesiy. From this point
of view, it is also suggested that in the program design,gusmall size variables helps

to alleviate the memory fragmentation problem. As an examipbm the space profiling

www.manaraa.com

81

results for GiEM on Linux, the “dmm” results are less suffered from memorgifnanta-
tion under GiEM-E and GHEM-EC modes compared toHEM-1 and CHEM-IC modes.
Because under @EM-E and GHEM-EC modes, the size of variables are much smaller
than those in @eM-1 and CHEM-IC modes. Fragmentation is a major problem in alloca-
tor design and largely affects the quality of the allocaldrus our space profiling results
suggest if one has no choice of the allocator, then using megreedy scheduling and

chomping can alleviate the fragmentation probfem.

7.3.3 Performance Profiling Results

In this section, the timing results of dynamic memory mamagat and chomping are
presented and discussed. These results reflect the amauntixne overhead associated
with dynamic memory management and the benefit from chomping

Figure 7.7 and Figure 7.8 summarize the timing results foEI€ on Linux (measured
on a single node on the IBM Linux Cluster) and SGI respectiv€he timing results for
dynamic memory management and chomping are shown as estgi@ed to preallocation.
Various chomping sizes are selected for testing with champiTable 7.4 exhibits the
results for RKELCELL program on Linux.

During our measurement of timing on Linux, we found the ressusually have large

variations, depending on system and program configuratidfesdo not yet fully under-

4Enabling the “mmap” mechanism in GNU C library can also @distialleviate the fragmentation prob-
lem, since large memory blocks are allocated through “mnaengl’ are immediately returned to the system
when freed.

www.manaraa.com

82

Summary of Timing on Linux
For the Chem Program

110
108 () Chem-l chomp
C B Chem-IC chomp
106 | 4 4 Chem-E chomp
C dmm results >—> Chem-EC chomp
104 [Chem-l: 115.2%
C Chem-IC: 100.1%
102] Chem-E: 101.9%
C Chem-EC: 100.0%

% of Time Used Comparing to Preallocation

16 32 64 128 256 512 1024
Chomping Size (KB)

Figure 7.7 Summary of Performance Measurement fo€IZ on Linux

Summary of Timing on SGI
For the Chem Program

=
o
S

L dmm results

r Chem-I: 100.1% (- Chem-I chomp

=
o
N

Chem-IC: 97.1%
Chem-E: 100.7%
Chem-EC: 101.4%

B Chem-IC chomp
4 ¢ Chem-E chomp
>—> Chem-EC chomp

=
o
o

©
@

96

94

% of Time Used Comparing to Preallocation

16 32 64 128 256 512 1024
Chomping Size (KB)

Figure 7.8 Summary of Performance Measurement foeZ on SGI

www.manharaa.com

83

Table 7.4 Timing results for BFELCELL on Linux

unit; second| time
pre 107.204
dmm 106.404

stand the reason for this result. We found the Linux opegatystem seems to be more
actively involved when a program is running. There may exiker interactions between
the operating system and the application program that we wet aware of. We leave
the investigation as one of the future work. On the SGI aechifre, the timing results are
more consistent. On the SGI, applications with dynamic mgmmanagement is gener-
ally slightly slower than applications with preallocatjaxcept for in one case {EM-
IC), “dmm” is faster. From the measured data, we concludapmiication with dynamic
memory management, the run-time overhead is reasonabléheBGI architecture, the
largest overhead observed is abbufs. On Linux, only in GHEM-I, there is considerable
amount of overhead. Other results are typically close tgptieallocation measurement.
The reason for large overhead irHEM-I is unknown and in fact it is possibly due to
random system interactioAsAs stated, these issues are left for future study.

The timing results for chomping show that typically speedupchieved, the perfor-
mance of applications with chomping outperform the perfamge of applications with

preallocation. But overall the speedup of chomping is bedawexpectation. There might

SApparently it is not caused by short periodical system migtions. For each data point in the figures,
we took 10 sample measurements and there are no obviousidesibetween all of the samples.

www.manaraa.com

84

be several possible reasons. First, complex system ininaenay destroy the chomping
benefit, especially on the Linux operating system. Secdmal study of chomping pre-
sented in this thesis provides an infrastructure that supploe chomping idea, there are
other issues that are not considered. For example, the [B@uand SGI server used in
these testing cases have a 512KB level 2 data cache and a 2ifi&lgecondary cache.
But we noticed the optimal chomping size is usually 32KB onux and 64KB to 256KB
on the SGlI, which is far below the cache size. This indicateschomping strategy has
other overheads. For example, as discussed in section &BechV/, the source and target
variables in the chomp chain may present a considerablem@trobaverhead in chomping.
These issues may adversely affect the performance of cimgngnd they are candidates

of our future study.

Table 7.5 Timing under Swapping forHEM on Linux

memory (MB) | swap (%)| time (s)

pre (10 iter) 700.331 50 2937.32
dmm (10 iter) 645.135 50 2445.59
chomp (128KB) (10 iter) | 470.651 16 709.025

chomp (128KB) (120 iter) 470.651 48.4 7918.03

As an additional study to the potential benefit of chomping,present at here an ex-
treme case: the performance comparison of applicationpvehllocation and chomping
under swapping condition. This is measured on an Intel Bentd PC with 512MB of

RAM. CHEM is configured to run under implicit time method with chenystrodel with

www.manaraa.com

85

a larger grid for the same problem used in all previous measents. We used the default
128KB chomping size in this case. The results are shown iteTab.

For application running under preallocation, ab60f; of the swap space usage is
reached. “dmm” has a similar swap space usage. The fact tmamn” is 1.2 times
faster than preallocation is that the dynamic memory mamagécauses less access to the
swapped region. Chomping has superior benefit under thés égaplication with chomp-
ing is more thant times faster than preallocation. Less memory allocatiochiomping
contributed to the less usage of swap space. Because chomapales are allocated as
small blocks, they do not have to be constantly swapped inoaid For chomping, we
also noticed a gradual increase of the swap space usage pogram runs. Under an-
other measurement for chomping, we increased the computttitimes. We observed
the swap space usage reaches arol®ul; during approximately half way of the com-
putation and stays stable at this level thereafter. Butithimg result scales well, actually
even slightly better than linear. This indicates the actessvapped region does not in-
crease as the swap space usage grows. This case study aestswgpossible benefit for
chomping in the future. As the gap of cache access speed andmaaory access speed
grows more towards the main memory and disk access gap, ¢hgropuld potentially

have significant impact on program performance as suggestbi case.

www.manaraa.com

86

7.3.4 Memory Utilization vs. Communication Costs

In order to examine the trade-offs between memory utilimaéind parallel communi-
cation costs, we utilize a large IBM Linux Cluster for the rm@@ments presented in this

section. Each test is conducted on 32 processors on therclust

Table 7.6 Mem vs. Comm under dmm on Linux Cluster

memory usage (MB) sync time
real bc points | time (s) | ratio(%)

comp greedy 372.352 174.464 32 3177.98| 1

mem greedy| 329.305 158.781 50 3179.24| 1.0004

Table 7.7 Mem vs. Comm under chomping on Linux Cluster

memory usage (MB) sync time
real bc points | time (s) | ratio(%)

comp greedy 307.133 171.628 32 2987.95| 1

mem greedy| 299.743 164.721 50 2994.05| 1.0020

Table 7.6 and Table 7.7 show the results for a typical larga Bpplication running
under implicit time method. We noticed the difference oflppeemory usage to be some
what significant when running with “dmm” alone. However, thing results are almost
identical. In the memory greedy schedule, the synchraoizgtoints are about.6 times

more than those in the computation greedy schedule. Buidiaglewn due to increased

www.manaraa.com

87

synchronization points is virtually negligible in both tab. A possible explanation is that
the application is computationally intensive, the addiéibcommunication startup costs

do not contribute significantly to the total execution time.

Table 7.8 Mem vs. Comm under dmm on Linux Cluster (a small)case

sync time
bc(MB) | points| time (s) | ratio(%)
comp greedy 1.07 32 1269.59| 1

mem greedy| 0.92 52 1436.07| 1.13

Table 7.9 Mem vs. Comm under chomping on Linux Cluster (a ktaak)

sync time
bc(MB) | points| time (s) | ratio(%)
comp greedy 1.08 32 1155.55| 1

mem greedy| 1.05 52 1699.33| 1.47

In order to verify our hypothesis and study the extreme chaethe increased syn-
chronization points could have, we created another testhisntest, we selected a much
smaller problem (more thar00 times smaller than the previous one), but running under
the same configuration as the previous measurement. Weecbaok a problem with the
hope that the parallel communication could be a major fadtoot dominant. The results

are shown in Table 7.8 and Table 7.9.

www.manaraa.com

88

In this case, we put the emphasis on the communication sidause we want to
study the potential effect of increases in synchronizaftiequency in a program. On the
other side, this is a small problem, when distributed to gaokessor, each one gets even
smaller dataset. The bean-counting peak memory is listdteitables only for reference
purpose to show the distinctions between computation amdonegreedy scheduling. In
fact, the memory bound is dominated by the size of progratniagons and internal data-
structure in this case. Note, the fact that the bean-cogipiak memory for chomping is
larger than the corresponding one for “dmm” is because ati¢vel of memory size, the
actual chomping size may be a dominant factor. We used 128K&hiomping size in this
case and did not optimize the allocation of chomping blocksmall problems.

The timing results show that the increased synchronizgiants have a significant
effect on the total execution time for such small problenmsthe schedule, the synchro-
nization points increased roughly6 times from computation greedy to memory greedy.
When running with chomping, the execution time increasealib.5 times. The slow-
down for “dmm” is less than this level, but we consider it torblatively significant.

Consider the “dmm” case in Table 7.8, the bean-counting russhow that roughly
14% of the memory saving is achieved from computation greededule to memory
greedy schedule, contrary, approximately same amountrédrpgance improvement is
achieved from memory greedy schedule to computation greelagdule. Of course, this

is an exaggerated case. But it does show that under certaim$tances, trade-offs do

www.manaraa.com

89

exist between memory utilization and parallel communaratiosts. And these trade-offs
can be utilized by the framework to maximize its flexibility.

The results in this section also suggest for computaticensive problem, the addi-
tional communication startup costs do not have noticedtdeteon the application perfor-
mance. Therefore for this type of applications, the memoegdy scheduling is preferred

because it potentially saves memory without undue perfoomaverhead.

7.4 Summary

This section presents extensive experimental resultsaoows topics studied in this
thesis. They range from the run-time property and behaviaigorithms developed in
this thesis to various outcomes of these algorithms. Aralysd discussion of various

implications of these results are also given in this chapter

www.manaraa.com

CHAPTER VIII

CONCLUSIONS

The study presented in this thesis proposed a high-levelnseHor dynamic mem-
ory management for a declarative data-parallel programrmystem — the Loci frame-
work. In addition to basic memory management, the proposkdmse also tries to take
advantage of the cache memory subsystem to improve thecapph performance. As a
side-effect of introducing dynamic memory managemens,shidy also presented the ex-
istence of performance trade-offs in memory utilizatiod parallel communication costs.
A balanced approach will require interactions between tkeenory and communication
scheduling strategies.

The experimental results support the primary hypothesgsgsed in this thesis. Ap-
plication with dynamic memory management have a lower peaiarny bound. Under
certain configurations, especially when combining withrapong technique and memory
greedy scheduling, the savings are relatively significktgtving dynamic memory man-
agement does not unduly affect the program execution timdadt, under most cases,
the overhead is negligible. By taking advantage of the cambenory subsystem, the
chomping technique improves the application performambe.benefit depends on actual

architecture and program configurations. On the memory sid@mping not only reduces

90

www.manaraa.com

91

the theoretical memory bound, but also contributes to @tethe memory fragmentation
problem. The dynamic memory management scheme usuallg\aashmaximum benefit
when combining with chomping. Memory greedy schedulingiosd the memory bound
and typically helps to alleviate the memory fragmentaticobpem. As expected, memory
greedy scheduling also increases the amount of synchtamzzoints in a parallel sched-
ule. But we found, in computation intensive applicatiof® increased communication
startup costs is typically negligible. Only in communicatibounded applications, the
number of synchronization points affect the executiongrentince. Thus, the trade-offs
between memory utilization and parallel communicatiortgegist under certain circum-
stances. This suggests, only under certain circumstatieesystem can take advantage
of this type of trade-offs.

This presented study also provides an infrastructure foinén exploring memory sys-
tem management in declarative data-parallel programnyisigss and resource manage-

ment in general.

8.1 For Future Research

Some of the discussions in chapter VIl already suggestesildesuture work. In
particular, we aim to provide a high-level managementatpatn this thesis and start off
by assuming that this strategy will work smooth with lowdéedetails. Now by looking at
some of the experimentation results, we found our assumfiiibe some what optimistic.

It is time now to look back some of these issues. In particaarshown in chapter VII,

www.manaraa.com

92

we have two main issues: the dubious memory leak problem dn&@ the irregular
timing behavior on Linux. Identifying and solving these Iplems can greatly improve the
practicability of the techniques developed in this thesis.

Second, the performance improvements by chomping is belmvexpectation. After
measurements in chapter VI, we created a fictitious Locg@m that is highly opti-
mized for chomping. We found the performance improvemenietquite significant. We
achieved! .5 times speedup on Linux ariciimes speedup on the SGI. Although this is an
exaggerated case and is unlikely to appear in real designgdests there are still rooms
for improvements. In particular, we want to investigate éfiect to chomping perfor-
mance by using different scheduling algorithms that arenupéd for cache performance.
By this time, the chomping graph is scheduled using the dtefamputation greedy algo-
rithm. This may not be the best choice for scheduling choggiraph because it is not
aware of preserving the cache benefit. In other words, ittcsecthedule things that destroy
the cache benefit. Thus, we want to investigate the effectag#dche-aware scheduling

algorithm.

www.manaraa.com

REFERENCES

[1] A. Aiken, M. Faehndrich, and R. Levien, “Better Static Mery Management: Im-

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

provements to Region-Based Analysis of Higher-Order Laggs,” Proceedings:
SIGPLAN Conference on Programming Language Design andelmghtationSan
Diego, California, 1995, pp. 174-185.

G. Attardi, T. Flagella, and P. Iglio, “A customisable mery management frame-
work for C++,” Software Practice and Experienosl. 28, no. 11, 1998, pp. 1143—
1183.

S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith, “Eificst management
of parallelism in object-oriented numerical software dibes,” Modern Software
Tools in Scientific Computinde. Arge, A. M. Bruaset, and H. P. Langtangen, eds.,
Birkhauser Press, 1997, pp. 163-202.

E. D. Berger, B. G. Zorn, and K. S. McKinley, “ComposingdhiiPerformance
Memory Allocators,” Proceedings: SIGPLAN Conference on Programming Lan-
guage Design and Implementati@ddnowbird, Utah, 2001.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandf@ache-Oblivious Al-
gorithms,” Proceedings: The 40th Annual Symposium on Foundations wipGter
Science, FOCS '9New York, NY, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidd3esign Patterns: Elements
of Reusable Object-Oriented Softwardddison-Wesley, Reading, Massachusetts,
1995.

D. Gay and A. Aiken, “Memory Management with Explicit Regs,” Proceed-
ings: SIGPLAN Conference on Programming Language Desigrimplementation
Montreal, Canada, 1998, pp. 313-323.

D. Gay and A. Aiken, “Language Support for Region$Jtoceedings: SIGPLAN
Conference on Programming Language Design and Implement&001, pp. 70—
80.

D. Grunwald, B. Zorn, and R. Henderson, “Improving theaLocality of Memory
Allocation,” Proceedings: SIGPLAN Conference on Programming Languaggd
and ImplementatiomAlbuquerque, New Mexico, 1993, pp. 177-186.

93

www.manaraa.com

94

[10] S. Karmesin, J. Crotinger, J. Cummings, S. Haney, W.umphrey, J. Reynders,
S. Smith, and T. Williams, “Array Design and Expression Eion in POOMA II,”
Proceedings: International Symposium on Computing in €ibjeriented Parallel
Environments (ISCOPE’'98panta Fe, New Mexico, 1998, Springer-Verlag, pp. 231—
238.

[11] A. LaMarca and R. E. Ladner, “The Influence of Caches anPerformance of
Sorting,” Journal of Algorithmsvol. 31, 1999, pp. 66—-104.

[12] E. A. Luke, “Loci: A Deductive Framework for Graph-Babsélgorithms,” Pro-
ceedings: Third International Symposium on Computing ife@kOriented Parallel
EnvironmentsSan Fransisco, California, 1999, Springer-Verlag, pR-143.

[13] N. Mitchell, L. Carter, and J. Ferrante, “Localizing Naffine Array References,”
Proceedings: Parallel Architectures and Compilation Teiciues '99 Newport
Beach, California, 1999, IEEE Computer Society and IFIP kiviay Group 10.3.

[14] J. G. Siek and A. Lumsdaine, “The Matrix Template LilyraA Generic Program-
ming Approach to High Performance Numerical Linear AlgebRroceedings: In-
ternational Symposium on Computing in Object-OrientedaParEnvironments (IS-
COPE’98) Santa Fe, New Mexico, 1998, Springer-Verlag, pp. 59-70.

[15] T. Sterling, D. Becker, D. Savarse, J. Dorband, U. Ralavand C. Packer, “Be-
owulf: A Parallel Workstation for Scientific Computation?roceedings: The 1995
International Conference on Parallel Processjd®95, pp. 11-14.

[16] M. Tofte and L. Birkedal, “A Region Inference Algorithin Transactions on Pro-
gramming Languages and Systems (TOPL#@&) 20, no. 5, July 1998, pp. 734-767.

[17] T. L. Veldhuizen, “Arrays in Blitz++,” Proceedings: International Symposium on
Computing in Object-Oriented Parallel Environments (ISEE08), Santa Fe, New
Mexico, 1998, Springer-Verlag, pp. 223-230.

[18] P.R. Wilson, “Uniprocessor Garbage Collection Tecfueis,”Proceedings: Interna-
tional Workshop on Memory Manageme&t. Malo, France, 1992, Springer-Verlag.

[19] P.R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, fiBgnic storage allocation:
A survey and critical review,” Proceedings: International Workshop on Memory
Managementinross, Scotland, 1995, Springer-Verlag.

www.manaraa.com

	Dynamic memory management for the Loci framework
	Recommended Citation

	thesis.dvi

