
www.manaraa.com

Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-8-2004

Dynamic memory management for the Loci framework Dynamic memory management for the Loci framework

Yang Zhang

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Zhang, Yang, "Dynamic memory management for the Loci framework" (2004). Theses and Dissertations.
1588.
https://scholarsjunction.msstate.edu/td/1588

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1588?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

www.manaraa.com

DYNAMIC MEMORY MANAGEMENT FOR THE LOCI FRAMEWORK

By

Yang Zhang

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2004

www.manaraa.com

Copyright by

Yang Zhang

2004

www.manaraa.com

DYNAMIC MEMORY MANAGEMENT FOR THE LOCI FRAMEWORK

By

Yang Zhang

Approved:

Edward A. Luke
Assistant Professor of Computer Science
and Engineering
(Major Professor)

Eric Hansen
Associate Professor of Computer Science
and Engineering
(Committee Member)

Yoginder Dandass
Assistant Professor of Computer Science
and Engineering
(Committee Member)

Susan M. Bridges
Professor of Computer Science and
Engineering, and Graduate Coordinator,
Department of Computer Science
and Engineering

A. Wayne Bennett
Dean of the College of Engineering

www.manaraa.com

Name: Yang Zhang

Date of Degree: May 8, 2004

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Edward A. Luke

Title of Study: DYNAMIC MEMORY MANAGEMENT FOR THE LOCI FRAME-
WORK

Pages in Study: 94

Candidate for Degree of Master of Science

Resource management is a critical part in high-performancecomputing software. While

management of processing resources to increase performance is the most critical, efficient

management of memory resources plays an important role in solving large problems. This

thesis research seeks to create an effective dynamic memorymanagement scheme for a

declarative data-parallel programming system. In such systems, some sort of automatic

resource management is a requirement. Using the Loci framework, this thesis research

focuses on exploring such opportunities. We believe there exists an automatic memory

management scheme for such declarative data-parallel systems that provides good com-

promise between memory utilization and performance. In addition to basic memory man-

agement, this thesis research also seeks to develop methodsthat take advantages of the

cache memory subsystem and explore balances between memoryutilization and parallel

communication costs in such declarative data-parallel frameworks.

www.manaraa.com

DEDICATION

in memory of my grandma

ii

www.manaraa.com

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Ed Luke, for his time,suggestions, and guid-

ance. He was very patient in explaining various difficult concepts and helped point me in

the right direction when I was in hard times. It has been pleasure to work with him. Thanks

to Eric Hansen and Yogi Dandass for serving on my thesis committee and the comments

and suggestions they made on my work. Thanks to JunXiao Wu forkindly providing the

FUELCELL program. Thanks to Ed Allen for his thesis template, which made my life

much easier.

I would also like to thank the Department of Computer Scienceand Engineering and

the Engineering Research Center for providing financial support and facilities to my thesis

research. This thesis was created using LATEX 2ε, GNU EMACS, Tgif, and Xmgrace. I

would like to express my appreciation to their authors for making these nice tools freely

available.

Finally special thanks to my parents, for their love and continuous support.

iii

www.manaraa.com

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

I. INTRODUCTION . 1

1.1 Background . 1
1.1.1 The Loci Framework . 2

1.2 The Problems . 3
1.3 The Hypothesis and Goal . 5

II. RELATED WORK . 7

2.1 Allocation Technique . 7
2.2 Manual Memory Management . 10
2.3 Automatic Memory Management . 10
2.4 Summary . 12

III. THE LOCI FRAMEWORK . 14

3.1 Elements of Loci . 14
3.2 The Loci Data Model . 15
3.3 Rule Specifications . 17

3.3.1 Point-wise Rule Class . 18
3.3.2 Singleton and Parameter Rule Class 19
3.3.3 Reduction Rule Class . 20
3.3.4 Iteration Rule Class . 20

3.4 The Scheduler . 22
3.4.1 Dependency Graph Generation 22

iv

www.manaraa.com

CHAPTER Page

3.4.2 Decomposition . 23
3.4.3 Existential Analysis . 24
3.4.4 Schedule and Compile . 25

3.5 Summary . 25

IV. BASIC DYNAMIC MEMORY MANAGEMENT 27

4.1 Memory Management as Graph Decoration27
4.2 The Multilevel Graph . 29

4.2.1 The Loop Structure . 31
4.2.2 Recurrence Internal Rules . 34

4.3 Graph Decoration Algorithm . 35
4.3.1 Single Rule Decoration . 35
4.3.2 Single Graph Decoration . 37
4.3.3 Multiple Level Decoration . 39

4.4 Summary . 44

V. CHOMPING TECHNIQUE . 45

5.1 The Chomping Idea . 45
5.2 Searching for Chompable Subgraph48
5.3 The Chomping Size . 57
5.4 Summary . 57

VI. SCHEDULING POLICIES . 58

6.1 Relations Between Memory Utilization and Communication Costs . . . 58
6.2 Memory Greedy Scheduling . 61
6.3 Summary . 67

VII. RESULTS . 68

7.1 The Evaluation Methods . 68
7.2 Issues in Evaluation . 69
7.3 Measurement Results . 71

7.3.1 Loci Scheduler Statistics . 72
7.3.2 Space Profiling Results . 74
7.3.3 Performance Profiling Results 81
7.3.4 Memory Utilization vs. Communication Costs 86

7.4 Summary . 89

v

www.manaraa.com

CHAPTER Page

VIII. CONCLUSIONS . 90

8.1 For Future Research . 91

REFERENCES . 93

vi

www.manaraa.com

LIST OF TABLES

TABLE Page

7.1 Statistics of Loci Scheduler 72

7.2 Statistics of chomped variables 74

7.3 Space Profiling results for FUELCELL on Linux 79

7.4 Timing results for FUELCELL on Linux . 83

7.5 Timing under Swapping for CHEM on Linux 84

7.6 Mem vs. Comm under dmm on Linux Cluster 86

7.7 Mem vs. Comm under chomping on Linux Cluster 86

7.8 Mem vs. Comm under dmm on Linux Cluster (a small case) 87

7.9 Mem vs. Comm under chomping on Linux Cluster (a small case) 87

vii

www.manaraa.com

LIST OF FIGURES

FIGURE Page

3.1 Loci Architecture .14

3.2 Four Basic Database Constructs 16

3.3 Iterations and Iteration Label 21

3.4 The Dependency Graph . 23

3.5 Decomposition . 24

4.1 The Multilevel Graph: The Top Level 30

4.2 The Multilevel Graph: Another Level 31

4.3 Loop Structure . 32

4.4 Loop Structure: The Collapse Part 33

4.5 Loop Structure: The Advance Part 33

4.6 Loop Structure: The Conditional Part 33

4.7 Single Rule Decoration .. 36

4.8 Single DAG Decoration .37

4.9 Placement of Recycling .. 42

5.1 The Chomping Idea . 46

5.2 Implementation of Chomping .. . 48

5.3 Chomping Property One . 50

viii

www.manaraa.com

FIGURE Page

5.4 Chomping Property Two . 51

5.5 Chomping Property Three .. 51

5.6 Positions of Chomp Chains in A DAG .. 56

6.1 Different Scheduling for A DAG .. . 59

7.1 Summary of Space Profiling on Linux (Chem-I) 75

7.2 Summary of Space Profiling on Linux (Chem-IC) 76

7.3 Summary of Space Profiling on Linux (Chem-E) 76

7.4 Summary of Space Profiling on Linux (Chem-EC) 77

7.5 Summary of Space Profiling on SGI (Chem-E) 77

7.6 Summary of Space Profiling on SGI (Chem-EC) 78

7.7 Summary of Performance Measurement for CHEM on Linux 82

7.8 Summary of Performance Measurement for CHEM on SGI 82

ix

www.manaraa.com

CHAPTER I

INTRODUCTION

1.1 Background

Numerical simulation is becoming increasingly important.We use simulations to ad-

vance our understandings of scientific theories or to improve our capabilities in modern

engineering design. Most of these numerical modeling problems are inherently complex.

Due to the vast computing requirements of these simulations, supercomputers are often

needed to gain better and more realistic results. With the recent advances in microproces-

sor power and high speed interconnection networks, distributed parallel systems based on

groups of networked workstations have become available. They are often calledclusters.

Some of these clusters (e.g., the Beowulf project [15]) are starting to compete with the

largest traditional supercomputing machines while offering a far better performance-cost

ratio. This has made numerical modeling much more economically feasible than ever

before.

Unfortunately, while the hardware cost is dropping radically, the software cost required

to utilize these resources is still substantial. Often, programming these clusters requires

message-passing-based paradigms, which are usually tedious and error prone compared to

traditional sequential programming. MPI is now thede factostandard for distributed mem-

1

www.manaraa.com

2

ory programming. Significant research has been conducted indeveloping portable and

reusable parallel code. Object-orientation has been a trend in recent numerical software.

The development of high-performance value classes [14, 17,10] tends to provide better

abstractions for common mathematical constructs, while the development of application

toolkits [3] tends to reduce the complexities of coordinating loosely coupled components

in an application.

1.1.1 The Loci Framework

Loci [12] is a programming framework for high-performance computational field sim-

ulations. It seeks to reduce the complexity and cost associated with developing large-scale

scientific applications, such as computational fluid dynamics software. The design of Loci

realizes that in developing large applications, a significant portion of complexity and the

bugs are from the errors in incorrect looping structures, improper calling sequences, or

incorrect data movements. Loci eliminates such internal inconsistencies by using a run-

time deduction engine that generates the application control structure and data movement

operations automatically from component specifications.

Loci is a declarative programming framework. It changes theway that numerical soft-

ware is specified. In the framework, users do not need to explicitly construct a program.

They only provide descriptions of attributes (data) and thetransformations between at-

tributes in terms of “rules,” as in logic programming. Then they query a particular result

www.manaraa.com

3

similar to a database query. Loci will automatically derivea machine-executable program

that satisfies the users’ request.

1.2 The Problems

In addition to the ease of application construction and guaranteed internal consistency,

automatic parallelization is another great strength of Loci. The underlying numerical

model does not have to refer to any explicit parallel execution. This is a natural “side

effect” of the Loci approach. It essentially demonstrates Loci’s capability to do intra-

application resource management.

Loci is targeted at numerical software. The type of problemsmodeled by these soft-

ware are usually complicated and large (in terms of computational resource). Parallel

processing is used not only to speed up computing, but also togain enough of the mem-

ory required by the simulation. Thus, besides computational power utilization, memory

utilization poses another challenge in numerical simulation.

As mentioned before, the software costs to utilize these computational resources are

substantial. Loci is a novel framework that reduces the software cost dramatically. How-

ever, Loci does not presently address the memory problem, despite of its ease to perform

resource management. Loci currently uses a naive preallocation scheme. In this preal-

location scheme, all variables are allocated in advance before the program starts and are

deleted at the end of the program. Therefore the lifetime of every variable is equal to the

lifetime of the program. Part of the reason for using preallocation is that it tends to min-

www.manaraa.com

4

imize the computational cost associated with allocation, allowing for high performance.

But from the memory utilization point of view, preallocation yields maximum memory

bound, which is not efficient. So the first question we have is:Is it possible to do memory

management that provides reasonable compromises between memory and performance?

In other words, can we utilize the memory resources in a declarative framework on the

same system to solve larger problems than before? Can we achieve this goal without

unduly impacting execution time?

As the gap of processor and memory speed grows larger and larger, cache is becom-

ing increasingly important in performance critical applications. Many theories and meth-

ods [5, 11, 13] have been devised to increase cache performance. Loci is a declarative

framework, meaning users do not have direct control over resources. Thus, we have several

questions concerning the cache: Can we identify the cache aspects for scientific applica-

tions in a declarative framework? Do we have a good management policy in a declarative

framework to increase the cache performance for scientific applications? Are there any re-

lationships between memory management and cache utilization? In other words, do they

support each other, or do they conflict with each other?

We anticipate that memory management will introduce extra costs into the Loci frame-

work. But parallel computing also has inherent overheads, such as communications. We

would also like to explore the relations between memory management and parallel over-

heads. Does optimizing memory management require changingthe parallel computation

schedule generated by Loci? What impact do these changes have on performance? Mem-

www.manaraa.com

5

ory management in a declarative framework certainly introduces overheads, but can we

gain other rewards by having a good memory management scheme?

Finally, can we characterize the common patterns of memory utilization in scientific

applications so that we can further our understanding of memory management in general

and have insights into possible future research projects?

1.3 The Hypothesis and Goal

The hypotheses of this thesis research are:

• In a declarative data-parallel programming system such as Loci, some sort of au-
tomatic resource management is a requirement. We believe that there exists an au-
tomatic memory management scheme for such declarative systems that provides a
good compromise between memory utilization and performance. Specifically, we
claim that such an allocation scheme will have reasonable run-time overhead com-
pared to the preallocation strategy while also providing relatively significant im-
provements in memory utilization.

• We also claim that through careful resource management and utilization, the execu-
tion speed of applications using dynamic memory managementscheme will outper-
form applications using preallocation strategy. We make such claim with the antici-
pation that the allocation scheme will take advantage of cache memory subsystems
in a manner that is not possible with preallocation.

• Additionally, we claim that there exists performance trade-offs between memory
utilization and communication costs in data-parallel programming systems. Due to
these trade-offs, a balanced approach will require interactions between the memory
and communication scheduling strategies.

The goals of this thesis research are:

• We aim to design an efficient and effective memory managementscheme for the
Loci framework. Particularly, we want to reduce the peak memory requirement of
an application built using the Loci framework so that largerproblems can be solved
on the same system.

www.manaraa.com

6

• We want to extend Loci’s intra-application resources management ability to include
the cache. And we want to evaluate the possible effects of cache optimizations in
the Loci framework.

• We want to study the possibility of incorporating some static and run-time policies
into the Loci framework. We seek to improve Loci’s adaptability so that users or
Loci itself can choose or switch to more appropriate actionsunder different circum-
stances.

Loci provides an ideal platform for testing and evaluating some of the ideas for sci-

entific application memory management. We also hope that through this research we can

achieve a better understanding of designing declarative frameworks for numerical soft-

ware.

www.manaraa.com

CHAPTER II

RELATED WORK

The memory system is a central part of modern computer architectures. It has been

studied extensively in the past decades. Memory is used to store program instructions and

data. Any system has a limited amount of memory available, thus the efficient utiliza-

tion and management of the memory is important. Memory management can be traced to

the hardware and operating system level, where the actual physical devices are more con-

cerned. From the application program’s point of view, memory management supplies the

amount of space needed by the application and recycles memory that is no longer needed.

Thus memory management at the application level involves allocation and recycle. This

section discusses some of the techniques that have been developed and how they relate to

Loci memory management.

2.1 Allocation Technique

Generally, allocation is implemented as a library, such asmalloc in C. It is often re-

ferred to as anallocator. Usually at run time, the allocator receives large blocks ofmemory

from the operating system directly. Then the allocator partitions the memory, supplies the

7

www.manaraa.com

8

partitions for program requests, and later recycles them. Usually these storages are allo-

cated at the “heap.”

In conventional allocators, once a block of memory has been allocated, the allocator

cannot move it or copy the contents to other places (compact memory). Also application

programs can request an arbitrary size memory at an arbitrary time and return the memory

at any time later. Thus, fragmentation poses a serious problem for allocators. Often, there

are external fragmentation and internal fragmentation. External fragmentation refers to

allocator’s inability to grant requests from application programs, although there is enough

total free memory. Because all the free blocks are small and are scattered, no one free

block is large enough to satisfy the request. If the allocator supplies too large of a block

to a request, then the rest of the memory in that block cannot be used by others, causing

internal fragmentation.

Therefore, the typical techniques used to design allocators are to choose a good place

for allocation and to have a good recycling management. It would be ideal not to waste

space and time, but, in general, this is not possible to achieve because the application

program behaviors are hard to predict and the allocator has to deal with general programs.

Therefore, heuristics are often used in the allocator to guide the placement policy. There

are many techniques and placement strategies, each with itsown strength and weakness.

Recycling is also similar to placement. Often coalescing, merging fragmented memory

segments, is used to combine small free blocks into larger ones. But one has to make some

www.manaraa.com

9

trade-offs in determining when to coalesce. These algorithms are surveyed in Wilson et al.

[19].

Locality is another problem to be considered in designing anallocator. Cache and

page misses can sometimes greatly affect the program performance. Some dynamic stor-

age allocation algorithms are designed to be aware of the locality problem. The cache

performance of various allocation algorithms are studied in Grunwald et al. [9].

A conventional general purpose allocator cannot always perform well for all appli-

cations. As a consequence, special purpose, or custom, allocators are often built for a

particular type of program. Frameworks [2, 4] are sometimesused to build custom allo-

cators. Custom allocators often take advantage of domain-specific knowledge or certain

patterns in the allocation and can be designed to have an extremely low cost.

A widely used technique for optimizing dynamic memory allocation is to use regions.

In a region based allocator, objects are often grouped into aspecified region. The region

is allocated once, and inside it, object allocation is managed through simple pointer ma-

nipulations. Objects in a region cannot be freed individually; instead the whole region is

destroyed. Region-based memory management often results in good localities and flexible

policies. It is possible to use different allocators on different regions, and even garbage

collection may be used on some regions. Gay and Aiken [7, 8] discussed adding region

support into languages directly.

www.manaraa.com

10

2.2 Manual Memory Management

The allocator is a low level design concern — rarely do programmers care about it.

From the programmers’ point of view, memory management is more of a strategy. Either

they explicitly manage memory, or the system automaticallyhandles the management.

With manual memory management, the programmer has direct control over memory

recycling. This is done explicitly by usingfree or dispose statements in the program.

The benefits of this approach are clear: Programmers gain direct control over the memory

recycling, they have clear ideas of the whole picture, and sometimes this is more efficient.

But in general, it is hard to manage memory explicitly. As theprogram grows larger

and larger, managing memory becomes complex. It is hard to keep track of it. Thus, bugs

could be easily introduced into the program and are then hardto find. The most common

errors are known asdangling pointerandmemory leak. A dangling pointer occurs when

memory is recycled too early, while the memory leak occurs when memory is not recycled.

Moreover, this manual approach does not scale well and does not encourage modular

programming in general. Because a large part of the code is used to handle memory

management, component interfaces are often polluted by irrelevant and complex memory

management constraints.

2.3 Automatic Memory Management

Automatic memory management is the opposite of manual memory management. It

is often a system service and is a general technique that automatically recycles useless

www.manaraa.com

11

memory. Thus programmers are freed from bookkeeping details and can concentrate on

the fundamental programming requirements.

Garbage collection is the most prevalent automatic memory management technique. In

this technique, useless memory is consideredgarbageand is automatically recycled by the

run-time system. Although in general it is undecidable whether an object is garbage or not,

in practice, approximations are often effective. Garbage collection is often incorporated

into programming languages since the object’s layout and roots are needed by the run-time

system. Many modern programming languages support garbagecollection, such asJava,

ML, Smalltalk, etc. Some languages likeC andC++ use manual management, but they

also have conservative garbage collection extensions.

In garbage collection, thegarbage collectorruns periodically to reclaim useless mem-

ory. Tracing or reference counting are often used to distinguish live and dead objects.

More advanced techniques like incremental collection and generational collection [18] are

also being used and studied.

Region inference is another form of automatic memory management. It is a rela-

tively new technique compared to garbage collection. It wasproposed by Tofte et al. [16]

and was implemented and studied in theML kit compiler. Instead of relying on run-time

garbage collection, region inference relies on static program analysis. It is a compile-time

method and uses the region concept. The compiler analyzes the source program and in-

fers how many regions are needed, where they should be allocated and deleted, and to

which region each allocation should be bound. The region lifetime obeys stack discipline,

www.manaraa.com

12

thus eliminating the need for garbage collection. In addition to being fully automatic and

safe, this approach also eliminates the run-time overhead of memory management as in

the garbage collection. In Aiken et al. [1], the stack restriction of region lifetime has been

removed by solving a constraints problem. But in general, this static method is sensitive to

the program style: A small change in the source program may result in significantly differ-

ent inference of memory management. To date, this techniqueis only available for typed,

high-order, call-by-value language ML because ML’s clean semantics and the strong typ-

ing system made the inference possible.

2.4 Summary

This thesis focuses on the memory management strategies forthe Loci framework,

rather than on low level designs such as customize allocators. Loci is a coordination

framework, choosing and designing a custom strategy is moreimportant than focusing

on custom allocators. They are issues on different levels: Custom allocators are sub-

sidiaries of the management strategy that fine tune memory layout and fragmentation is-

sues. Whereas Loci requires larger scale assembly management more similar to region

inference and garbage collection.

The goal and programming style of Loci makes manual memory management either

impossible or inadequate. It complicates the design of the program, thus contradicting

Loci’s primary goal. Also, the declarative programming style means memory cannot be

directly controlled.

www.manaraa.com

13

Loci targets scientific software. Scientific programs tend to use all of the available

memory. Thus the primary goal of the strategy is to reduce thepeak memory required so

that larger problems can be solved on the same system, enabling more realistic simulations.

Reducing the peak memory requires reducing the memory usagebound. Techniques like

garbage collection tend to have poor predictability because the allocation and deallocation

are decoupled. The recycling process completely relies on run-time decisions, and the

garbage collector may also consume additional space and time. Therefore, the memory

bounds are hard to guarantee. Loci manages and assembles theapplication components.

It can easily perform global analysis to determine relationships between computations

and variable lifetimes. Thus, coupling the allocation and deallocation is possible. This

is important to obtain more stable memory bound and to reducerun-time management

overhead.

The candidate strategy is more like the region inference method. It is automatic at the

application level and the framework “infers” appropriate allocations and recycles. Regions

are not used in Loci because Loci is mainly a coordination framework. It operates on

collections of entities and assembles different components together. It does not require

fine-grained allocation.

www.manaraa.com

CHAPTER III

THE LOCI FRAMEWORK

This chapter details some design principles, internal structures, usages, and character-

istics of the Loci framework.

3.1 Elements of Loci

Loci is a framework to build high-performance scientific applications. Loci coordi-

nates and assembles applications from component specifications. The fundamental pro-

gramming paradigm of Loci is declarative.

Fact Database

Mesh Topology

Mesh Positions

Rule Database

Solve Matrix

Compute Volume

Loci
Scheduler

User Query:
"solution"

Decompo-
sition

Dependency
Graph

Existential
Analysis

Schedule &
Compile

Execute and
generate

results for
user query

Figure 3.1 Loci Architecture

14

www.manaraa.com

15

The general system architecture of the Loci framework can becharacterized in Fig-

ure 3.1. Loci uses two databases, theFact andRuledatabase, to store and manage the

descriptions and specifications from user. The fact database maintains the data for the ap-

plication, and the rule database maintains the transformations between facts. The central

part of the system is theLoci scheduler, which is a deductive engine that automatically de-

rives application control flow, data movement, and aggregates computations. The shaded

parts in Figure 3.1 depict the major internal steps of the scheduler. From the user’s point

of view, developing an application using Loci is to build andmaintain the fact and rule

databases; executing the application is to supply a query toLoci.

The following sections discuss each part in detail.

3.2 The Loci Data Model

The fundamental concept in Loci isentity. Entities represent sites where computations

may occur. For example, in a triangular mesh, a single entitymay represent a triangle in

the mesh, or an edge, or a node. Loci automatically aggregates computations on entity

collections, therefore abstractions of data are also on thelevel of entity collections. There

are basically four types of data models in Loci. Thestoreconstruct provides an injective

mapping from entities to values. Theparameterconstruct maps a collections of entities to

a single value. Themapconstruct provides a way to model the relations between entities.

Theconstraintconstruct maps an attribute onto a subset of entities, whichis then used to

www.manaraa.com

16

constraint computations on that subset of entities. Figure3.2 illustrates the concept of the

four basic constructs.

parameter
maps many entities
to a single value

store
maps entities to
values

→ 11 → 1n

constraint
specifies a set of
entities

map
maps entities
to entities

n m→

Figure 3.2 Four Basic Database Constructs

These constructs are used to formulate the fact database that describes the problem.

Each fact provides some information of a subset of entities (i.e., collection of entities),

such as the positions of nodes, or maps relating triangles toedges. Each of these facts

is given an identifier in the fact database, thus facts are also referred to asvariables. An

identifier consists of a name and an optional pair of curly braces with iteration1 information

inside it. The general form of an identifier isα{τ + θ} whereα is the name and represents

the attribute of the fact,τ is the iteration level andθ is the iteration offset. For example,

energy{n+1} represents the attributeenergy at the next iteration of iteratorn.

The store and map constructs can be think of as array-like containers, where store

holds values for entities and map holds the related entitiesfor entities. Accessing the

associated value for an entity in stores and maps may be codedusing C++ array access

as energy[e], wheree represents an entity. The map construct can also be com-

1See section 3.3.4 for information on iteration specification.

www.manaraa.com

17

posed with the store construct to provide an abstraction of indirection. For example,

energy[left[e]], in which, energy is a store andleft is a map contains the

left neighbor of an entity (e.g., a cell) in a mesh. This meanswe are indirectly accessing

the storeenergy. In Loci, this access ofenergy through the mappingleft is denoted

asleft→energy. The “→” operator is used to represent the composition of maps and

stores.

3.3 Rule Specifications

In addition to the fact database, the rule database describes transformations between

facts that are used by Loci to deduce new facts and to infer program control flows that lead

to the user query. These rules of transformation are functions or algorithms that operate

on facts or attributes and generate new facts or attributes,such as rules for evaluating the

areas of faces, or for solving equations. These rules correspond to the fundamental steps

in computing the final result. In Loci, rules are denoted using character strings called “rule

signature.” Rule signature has the general formhead←body, wherehead andbody

are lists of facts. This means the facts inhead are generated by the application of this

rule, and the facts inbody are accessed during the evaluation of the rule. For example,

the rule signaturearea←face2node→position represents that the value forarea

can be inferred provided when factsface2node andposition are present. Note,

hereface2node is a map that connects faces to their defining nodes. Therefore in the

body of the rule signature, we are accessing the position of nodes that defining a face. An

www.manaraa.com

18

important implication of a rule is that it can be applied to any given entity if the conditions

(i.e., attributes) in the body are met on the entity.

Loci categorizes different types of computations in scientific computing into rule

classes. Analogous to the constructs in the fact database, each rule class has its own

semantic meaning and provides a template to formulate the rule database. In essence, rule

class defines the composition and application of rules over acollection of entities.

3.3.1 Point-wise Rule Class

Point-wise rule class is the most common computation in Lociapplications. The point-

wise rule class represents an entity by entity computation of attributes. The rule is applied

on each entity. Point-wise computation produces new facts (or attributes). The new facts

are usually store constructs associated with the collection of entities that the computation

was applied on. The semantics of point-wise computation requires that an output fact can

only define one value per entity. It is treated as an error if more that one rules compute

the same attribute for the same entity. Recursion is allowedin point-wise computation,

provided that the semantics are not violated. Point-wise computation can be described as:

f = r(e1) ∧ r(e2) ∧ · · · ∧ r(ei) ∧ · · · ∧ r(en) (3.1)

In which, r is the rule that applies on entity;{ei | i ∈ [1, n]} is the collection of entities

that the computation operates on;∧ means a single evaluation is independent of others;f

is the resulting store fact that has domain{ei | i ∈ [1, n]}.

www.manaraa.com

19

Note that parallel point-wise computation can be performed, provided that each pro-

cess has a subset of entities{ep | p ∈ [j, k]}, 1 ≤ j ≤ k ≤ n. Each process performs

a subset of point-wise computation:

fp = r(ep1
) ∧ r(ep2

) ∧ · · · ∧ r(epn
) (3.2)

Then the final fact can be obtained by:

f = f1 ∪ f2 ∪ · · · ∪ fi ∪ · · · ∪ fp (3.3)

3.3.2 Singleton and Parameter Rule Class

The singleton rule class is a special case of the point-wise computation. Since the

collection of entities share the same attribute value, rules only need to be applied once. The

parameter construct is used to map entities to the attributevalue. Singleton computation

can be described as:

f = r(ei) (3.4)

The definitions are the same as those in point-wise computation, except only exactly

one computation is performed. The resulting factf is a parameter that has domain

{ei | i ∈ [1, n]}. The singleton computation can also be parallelized. Sincethere is

only one computation, each process just duplicates the computation and the resulting pa-

rameter fact.

www.manaraa.com

20

3.3.3 Reduction Rule Class

Reduction defines another computation abstraction. In reduction computation, in ad-

dition to the point-wise computation, all resulting attribute values are “joined” together to

produce the final value. Reduction computation can be described as:

f = ε⊕ r(e1)⊕ r(e2)⊕ · · · ⊕ r(ei)⊕ · · · ⊕ r(en) (3.5)

In addition to the previous definition,⊕ is an associative and commutative operator that is

defined on the type of attribute returned byr; ε is an identity element of the operator⊕;

f2 is the resulting fact that has domain{ei | i ∈ [1, n]}.

Reduction can also be evaluated in parallel other than left to right sequential evaluation

because of the associative property of⊕. Parallelization can be obtained by partition the

computation as:

f = {ε⊕ r(e1)⊕ r(e2)⊕ · · · ⊕ r(ei)} ⊕ {ε⊕ r(ei+1)⊕ r(ei+2)⊕ · · · ⊕ r(en)} (3.6)

The identityε is required in each partition to indicate the initialization.

3.3.4 Iteration Rule Class

Iteration in Loci is defined by a collection of rule classes: the build rule classes that

initiate the iteration; the advance rule classes that advance the iteration; the collapse rule

classes that terminate the iteration. The specification is inductive. The build, advance,

2There are actually two types of reductions. The global reduction produces parameter facts, and the local
reduction produces store facts.

www.manaraa.com

21

and collapse specifications are usually point-wise computation and the collapse condition

specifications are usually singleton computation.

Iterations are specified by adding an iteration label to variable identifiers. Iteration

labels are organized into a hierarchy that rooted at stationary time (facts that do not iterate).

For example,v{n} represents variablev in iterationn. The{n} is the iteration label for

variablev. The relationship between Loci iteration label hierarchy and imperative loop is

shown in Figure 3.3.

dt = 10

t{n=0} = 0
do n=1,...
 t{n} = t{n-1} + dt
 do it=1,...
 do igs=1,...
 done igs
 done it

 do igs=1,...
 done igs
done n

Stationary

n

n,it

n,it,igs

n,igs

Figure 3.3 Iterations and Iteration Label

For example, using rule signatures, we can specify an iteration as following: a

build rule q{n=0}←init; an advance ruleq{n+1}←q{n},deltaq{n}; a collapse

rulesolution←q{n},CONDITION(converged). In the advance specification, the

q{n+1} means the value ofq in the next iteration (hence it is inductive definition). The

CONDITION(converged) in the collapse specification determines the termination of

the iteration. Upon exit, the computation ofsolution is executed.

www.manaraa.com

22

Computation in an iteration can access values computed at either its own iteration level

or at parent levels. During the Loci scheduling phase, variables in lower iteration level are

automatically promoted up the iteration hierarchy. For example, variables computed at

level {n} are communicated to level{n,it} automatically. In addition, specifications

independent of iteration (i.e., specifications do not have iteration labels involved) can be

promoted to any level in the iteration hierarchy.

3.4 The Scheduler

Given the specifications and descriptions in the databases,an application is formed by

searching for an effective computation that leads to the user goal. As in Figure 3.1, the

Loci scheduler is responsible for application synthesize.The current Loci scheduler is

organized into four phases.

3.4.1 Dependency Graph Generation

Given the fact and rule databases and the goal, the program synthesis discovers all

relevant rules that contribute to the solution, invoke themin a proper order and infer the

domain for each rule and fact. A directed graph is used in Locito model the program

control structure and data movement. The first step in the scheduler is to search through

the databases and set up the dependences for all the rules that can be applied and all the

variables that need to be generated.

www.manaraa.com

23

a

c

d

e

c<-a,c

c<-b

d<-a,c

d<-b,c

e<-d,cb

Figure 3.4 The Dependency Graph

A dependency graph is illustrated in Figure 3.4. In the graph, both rules (computations)

and variables (facts or attributes) are represented as vertices. Edges in the graph connect

rules to variables or variables to rules, whereas rule to rule connection and variable to

variable connection do not exist. Usually there are edges from the rule vertex to its output

variable vertices and there are edges from the variable vertices that are in the rule body

to the rule vertex. In addition, Loci may add “internal” rules other than rules from the

database. These rules will be used in managing variable promotion and renaming.

3.4.2 Decomposition

Decomposition is the refinement of the first step. The dependency graph is further

reduced to a multilevel graph where each level is a directed acyclic graph (DAG). In this

step, certain computations such as iterations, conditionsor recursions are grouped into

subgraphs respectively. Analogous to structured programming, the resulting multilevel

graph (recursively) represents the structure and the natural order of computations that will

lead to the solution.

www.manaraa.com

24

a

c

d

e

c<-a,c

c<-b

d<-a,c

d<-b,c

e<-d,cb

a

c

c<-a,c

c<-bb

ee<-a,b,c

G = (V,E)

G = (V,E)

G = (V , E)p p p

Figure 3.5 Decomposition

Decomposition is illustrated in Figure 3.5. The shaded region in the above graph has

been identified as a certain structure. It is then grouped into a subgraph. The subgraph

appears as a vertex in the original graph, resulting in the new graph below.

3.4.3 Existential Analysis

Once all applicable rules and their orders are formed, the correct domains for each rule

and fact are inferred in the existential analysis phase. Forexample, the rulep←rho,R,T

implies the fact that has attributep will have domain:

domain(p) = domain(rho) ∩ domain(R) ∩ domain(T)

www.manaraa.com

25

The existential deduction begins with the given facts, and follows the multilevel graph

until the goal is reached. Then a pruning phase starts from the goal, and works backward

through the graph. All the attribute domains that do not contribute to the final solution are

pruned in the pruning phase, resulting in an optimized computation schedule.

3.4.4 Schedule and Compile

At this point, all information for program synthesis are deduced and set by the Loci

scheduler. The multilevel graph is then recursively scheduled and together with the rule

specifications in the database, a machine executable program is then produced and put in

execution.

3.5 Summary

The Loci framework has numerous advantages. Using the declarative programming

approach, the internal consistency of an application is guaranteed. This feature greatly

facilitates the construction of large-scale and multidisciplinary scientific applications.

Another unique feature of Loci is the automatic aggregationof computations. Users of

Loci can easily create abstractions using composeable objects at the fine-grain level with

simple semantics, yet avoid the run-time cost associated with dynamic dispatch.

The declarative approach also makes automatic intra-application resource management

possible. In the current implementation, automatic parallelization is supported. The se-

mantics of aggregations are simple and clear for parallelization. The scheduler can nat-

www.manaraa.com

26

urally produce a parallel schedule, the underlying specification does not have to refer to

any explicit parallelism. This resource management ability also facilitates the automatic

memory and cache management, which is the central theme of this thesis research.

This chapter presents an overview of the Loci framework and also provides necessary

background and terminologies for this thesis research.

www.manaraa.com

CHAPTER IV

BASIC DYNAMIC MEMORY MANAGEMENT

This chapter gives a comprehensive description of the design and implementation of

an automatic memory management scheme for the declarative data-parallel programming

framework Loci. The design of the automatic memory management provides the founda-

tion of this thesis research. All the following research attempts are built on top of the work

described in this chapter. The general guideline followed in the design of the automatic

memory management scheme is the first hypothesis described in chapter I: The memory

management scheme should be fully automatic, without any user intervention; it should

also provide good compromise between memory utilization and application performance.

4.1 Memory Management as Graph Decoration

As discussed in chapter II, explicit memory management and garbage collection are not

adequate for Loci. A new specialized strategy must be developed. For Loci memory man-

agement, being fully automatic means the framework itself should handle proper memory

allocation and recycling. As shown in chapter III, Loci usesdirected graph to model the

application control flow and data movement. Thus the first decision in designing the Loci

27

www.manaraa.com

28

memory management scheme is to incorporate the memory management process into the

application control flow graph.

In the dependency graph, computations and variables are vertices and are connected

together to form a partial order. The graph is finally scheduled and compiled into a pro-

gram. Thus, a natural extension for including memory management in the dependency

graph is to represent the memory allocation and recycling asvertices and insert them into

the existing dependency graph. Then when the graphs get compiled, proper memory man-

agement instructions are included into the application andwill be invoked in execution.

This process of including memory management instructions into the dependency graph is

referred to asgraph decoration. The automatic dynamic memory management for Loci

then becomes the graph decoration problem.

As shown in chapter III, Loci performs a decomposition aftergenerating the depen-

dency graph, resulting in a multilevel graph. Both dependency graph and the multilevel

graph represent the application control flow and data movement, but the multilevel graph

is more structured than the dependency graph. Thus, there are two possible graph decora-

tions: either decorate the dependency graph or decorate themultilevel graph. Decorating

the multilevel graph turned out to be easier then decoratingthe dependency graph. The

dependency graph is not acyclic, cycles are possible. Whilein the multilevel graph, each

level is a DAG. Moreover, if the dependency graph is decorated, the decomposition al-

gorithm also requires adjustments for an optimized decoration. Thus, multilevel graph

decoration is chosen.

www.manaraa.com

29

The central problem in multilevel graph decoration is to findcorrect and optimized

positions for proper memory allocation and recycling vertices. Since the graph has multi-

ple levels, information is possible to cross the boundary ofeach level, a global analysis is

needed. The purpose of the global analysis is to traverse thesubgraph hierarchy to collect

information and perform analysis for correct and optimizeddecoration of each subgraph.

The multilevel graph represents structured application control flow. In Loci, a separate

C++ class hierarchy is dedicated for scheduling and compiling the multilevel graph. In the

global analysis, different types of traversal actions are needed. These actions are imple-

mented as a parallel visitor [6] class hierarchy. Therefore, new actions can be conveniently

added as concrete visitors.

4.2 The Multilevel Graph

This section describes the structure and contents of the multilevel graph. In Loci,

the multilevel graph is a collection of subgraphs. These subgraphs are organized in a

graph hierarchy as levels. The multilevel graph has severallevels, each level is a DAG

and has vertices possibly represent another level of graph.Figure 4.1 is the top level of

the multilevel graph of a simple Loci application. This graph is a simple DAG, but it

contains other graphs. All the circles in the graph are variables (i.e., facts); the rectangular

shaped vertices are user supplied rules; the two octagonal shaped vertices represent other

subgraphs. Any vertex that represents a subgraph is referred to as a “super node,” hence

www.manaraa.com

30

a prefix “SN” is added to the signature of each super node, the number after “SN” is an

identifier for that node.

LS1 LS2

solution

solution<-E,LS1,LS2

C B A

DE

E<-B,C D<-A,B

SN1:LS1<-D,E SN2:LS2<-D,E

Figure 4.1 The Multilevel Graph: The Top Level

Figure 4.2 shows the contents of the left super node in Figure4.1 (the vertex with

signature “SN1:LS1<-D,E”). Figure 4.2 is also a simple DAG, but it contains yet another

subgraph: the “SN4” super node. Only bottom levels in the multilevel graph are conven-

tional DAG, they do not contain other subgraphs.

www.manaraa.com

31

LS1

loop1{n=0}

D E

D{n}

loop1{n=0}<-Epromote:D{n}<-D

generalize:loop1{n}<-loop1{n=0}

SN4:LS1<-D{n}

Figure 4.2 The Multilevel Graph: Another Level

4.2.1 The Loop Structure

Loop (i.e., iteration) is a major structure in Loci applications. A loop contains condi-

tional structure and simple DAG structure. It could also contain other loops, hence nested

loops are allowed. Since loops are specified inductively,1 therefore, they have more com-

plex structures. In Figure 4.2, the “SN4” super node represents a loop subgraph. The

overall structure of this loop is shown in Figure 4.3. The hexagonal shaped vertex with a

“looping” qualify is a Loci generated rule that ties each part of the loop together.

Recall from section 3.3.4, iteration is specified inductively by three steps: The build-

ing step, the advance step and the collapse step. In Loci, loops are therefore decomposed

into two parts: the collapse part and the advance part. Thus,loops are represented by two

DAGs in Loci. For the loop in Figure 4.3, the structures of these DAGs are shown in Fig-

1See section 3.3.4 for iteration specification.

www.manaraa.com

32

LS1

$n{n}

loop1_finished{n}

D{n}loop1{n}

loop1{n+1}

loop1_finished{n}<-$n{n}loop1{n+1}<-D{n},loop1{n}

looping:loop1{n},OUTPUT{n},$n{n}<-loop1{n+1},OUTPUT{n}

OUTPUT{n}

SN5:LS1<-loop1{n},loop1_finished{n},CONDITIONAL(loop1_finished{n})

Figure 4.3 Loop Structure

ure 4.4 (the collapse DAG) and Figure 4.5 (the advance DAG). An important property of

the collapse DAG and the advance DAG is they may share variables, but they will never

share any rules. As in Figure 4.4 and Figure 4.5, no rules are shared in two graphs, but the

variableloop1{n} exists in both graphs. In addition to the loop decomposition, a rota-

tion list is built for each loop. Since loop is specified inductively, variableloop1{n+1}

represents the value ofloop1{n} in the next iteration. Therefore, at the end of each itera-

tion, the contents ofloop1{n} andloop1{n+1} are swapped. The rotation list contains

variablesloop1{n} andloop1{n+1}, they maintain the history of the loop.

The collapse part of the loop also contains a conditional subgraph. Figure 4.6 shows the

conditional node for the collapse DAG in Figure 4.4. The conditional subgraph represents

the computations for the final results of the loop, it is only scheduled and executed once,

upon the exit of the loop. When scheduling the loop, the collapse DAG is always scheduled

first, if the condition fails, then the advance DAG is scheduled. In the last iteration of the

www.manaraa.com

33

LS1

$n{n}

loop1_finished{n} loop1{n}

loop1_finished{n}<-$n{n}

SN5:LS1<-loop1{n},loop1_finished{n},CONDITIONAL(loop1_finished{n})

Figure 4.4 Loop Structure: The Collapse Part

D{n}loop1{n}

loop1{n+1}

loop1{n+1}<-D{n},loop1{n}

Figure 4.5 Loop Structure: The Advance Part

LS1

loop1_finished{n} loop1{n}

 LS1<-loop1{n},CONDITIONAL(loop1_finished{n})

Figure 4.6 Loop Structure: The Conditional Part

www.manaraa.com

34

loop, the conditions are met, then the conditional node in the collapse part is scheduled.

The advance part is not scheduled in the last iteration.

4.2.2 Recurrence Internal Rules

Internal rules refer to rules that do not come from the rule database. They are Loci

generated rules, such as the looping rule in Figure 4.3. Theyact as glue that hooks the

graph together. Internal rules are represented as hexagonsin all previous figures. Loci

has three types of important internal rules that will affectthe memory management. They

aregeneralize rules, promote rulesand rename rules. They together are referred to as

recurrence internal rules.

Figure 4.2 shows the generalize and promote rules. They are related to iterations. In it-

eration specification, the first step is the building specification. The generalize rule is used

to generalize the iteration label of variables. As in Figure4.2, the initial iteration label

{n=0} is generalized to{n}. Recall from section 3.3.4, computation in an iteration can

access values computed at either its own iteration level or at parent levels. The purpose

of promote rule is to promote variables up in the iteration hierarchy so that they can be

accessed in child iteration levels. There is also rename rules, but they do not have special

signatures as generalize and promote rules. They can only been determined through in-

ternal data structures. The purpose of rename rules is for efficiency. For example, given

a rename rule:A ← B. It instructs Loci to do in-place update: VariableA occupies the

www.manaraa.com

35

same memory location as variableB, the computation would erase the contents ofB and

fill in the contents ofA.

Given a rulehead←body, the variables inbody are referred to assourcesfor this

rule; the variables inhead are referred to astargetsfor this rule. From the memory man-

agement point of view, the generalize rules, promote rules,and the rename rules specify

a recurrence relationship between the sources and the targets of a rule. In generalize and

promote rules, the sources and targets are actually the samevariables. They share the same

memory location and the same contents in that memory location, the only difference is the

iteration labels. In rename rules, the sources and targets share the same memory loca-

tion, but they do not share the contents, the existence of sources and targets is mutually

exclusive.

4.3 Graph Decoration Algorithm

4.3.1 Single Rule Decoration

Two internal rules are created to represent memory allocation and recycling respectively.

The signature of the rule for allocation is:ALLOCATE:V←CREATE; the signature of the

rule for recycling is:DELETE:V←DESTROY. ALLOCATE andDELETE are qualifies for

the rules. The symbolV represents a variable list, i.e., all the variables to be allocated or

deleted.CREATE andDELETE are virtual variables, they do not serve any purpose. Their

existence are to satisfy the rule signature format only.

www.manaraa.com

36

The smallest unit for decoration in the graph is a rule. Normally, a rule computes its

targets from its sources. From the memory management point of view, memory for the

targets need to be allocated before the rule proceeds and thememory for the sources is

no longer useful when the rule finishes, they can be recycled.Therefore, we can modify

the rule to include the memory management rules. Given a ruletargets←sources,

Figure 4.7 shows the decoration. The memory management rules now join the sources

and targets of this rule. All this specifies is a partial order. When this rule is scheduled,

memory management and computation are then interleaved. Note, the allocation rule has

no incoming edges, it only points to other rules, while the delete rule has no outgoing

edges.

sources

targets<-sources

targets

ALLOCATE:targets<-CREATE

DELETE:sources<-DESTROY

Figure 4.7 Single Rule Decoration

Recurrence internal rules need to be handled specially because they are not real com-

putations. No memory management actions are required for the recurrence internal rules.

Therefore, they do not require decoration.

www.manaraa.com

37

4.3.2 Single Graph Decoration

Given a DAG, a variable may be produced and consumed by multiple rules. To dec-

orate a DAG, the dependency relations must be considered. Toallocate a variable, the

allocate rule must have edges that point to all the rules thatproduce the variable. To delete

a variable, all the rules that consume this variable must have edges point to the delete

rule for the variable. In this way, the dependence of memory management operations and

computations can be set. Figure 4.8 shows an example of DAG decoration. In Figure 4.8,

the right graph is the decoration of the left DAG. In the decoration, all the hexagons are

memory management rules. Unshaded hexagons represent allocation; shaded hexagons

represent recycling.

decorate

Figure 4.8 Single DAG Decoration

www.manaraa.com

38

However, there are two problems with single DAG decoration in a multilevel graph.

The first one relates to the recurrence internal rules. Normally, we need to allocate every

target variable and delete every source variable in a DAG. A DAG may include recurrence

internal rules. As discussed in the previous section, no memory operations are required for

a recurrence internal rule. Therefore, the targets of recurrence internal rules are excluded

from the allocation list and the sources of recurrence internal rules are excluded from the

deletion list. They do not participate in memory management.

In a multilevel graph, a DAG may also contain vertices that represent a subgraph (i.e.,

super nodes). For efficiency concern, allocation should happen as late as possible and

recycle should be performed as earlier as possible. Therefore, if a variable is only produced

by one super node, the allocation is deferred or transferredto the subgraph represented by

the super node. For the same consideration, if a variable is last consumed by one super

node, then the recycling is deferred to the subgraph represented by the super node.

DAG-ALLOC-DECO(gr)

1 vars ← GETWORKINGVARS(gr)
2 grt ← TRANSPOSE(gr) � Transpose the graph
3 for vi ∈ vars

4 do next ← SUCCESSOR(grt, vi)
5 � Get all the rules that produce this variable
6 rules ← EXTRACTRULES(next)
7 � Get the number of super nodes and the total number of rules
8 snum ← GETSUPERNODENUM (rules)
9 rnum ← GETNUM (rules)

10 if not (snum = 1 andrnum = 1)
11 then� Create an allocation rule forvi
12 alloc ← CREATEALLOC(vi)
13 ADDEDGES(gr, alloc, rules)

www.manaraa.com

39

The procedure DAG-ALLOC-DECO performs the decoration for a single DAG. It in-

cludes all the discussions in this section. The procedure GETWORKINGVARS returns all

the targets in the graph but excludes the targets of recurrence internal rules. The deletion

decoration algorithm has a similar structure than DAG-ALLOC-DECO.

4.3.3 Multiple Level Decoration

If we traverse the multilevel graph in a top-down order, we get the order of compu-

tations. Ideally, we could traverse the multilevel graph top-down and apply algorithms

discussed in the previous section for each level. But real applications are complex, so are

their corresponding multilevel graphs. Subgraphs in the multilevel hierarchy are usually

tightly related to each other. Information usually crossesthe boundary of a single level.

Simple DAG decorations as in the previous section are not adequate. Decoration of the

multilevel graph should also consider global information.

MLG-DECO(mlg)

1 levels ← TRAVERSE(mlg)
2 for level ← TOP(levels) to BOTTOM(levels)
3 do vars ← GETWORKINGVARS(level)
4 for vi ∈ vars

5 do if RESPOND(level, vi)
6 then place ← COMPUTEPLACE(mlg, level, vi)
7 PLACEDECO(place, vi)

The general strategy to decorate the multilevel graph is shown in procedure MLG-

DECO. We traverse the multilevel graph top-down. For each level,all the variables that

could be allocated or deleted are gathered. Then for each variable, we determine whether

www.manaraa.com

40

this particular variable is handled in the current level. Ifso, a place for decoration is then

computed. Note, the place for decoration is not necessary inthe same level.

There are three key steps in MLG-DECO: the procedure GETWORKINGVARS, pro-

cedure RESPOND, and the procedure COMPUTEPLACE. The procedure GETWORKING-

VARS gathers candidate variables for allocation and deletion for each level. It works the

same as the one in section 4.3.2 but with some augmentations.The one in section 4.3.2

only considers variable recurrence relations in a single DAG. In a multilevel graph, the

variable recurrence relations could themselves become a DAG. Therefore, a preprocessing

step is performed for each recurrence relation DAG. A variable for allocation and a vari-

able for deletion are picked out from each such DAG, other variables in the DAG do not

participate in memory management.

The procedure RESPONDdetermines whether a variable should be processed in a par-

ticular level. It uses the algorithm in section 4.3.2: if a variable is only produced or

consumed by a single super node, then the allocation and deletion is skipped in the current

level. In addition, an allocated variable set and a deleted variable set are maintained. Once

an allocation or deletion decoration finishes, the corresponding variables are added into

these sets.

If an application has no iterations, the algorithm for decoration in section 4.3.2 should

suffice, only the dependency of a single level need to be considered. Iterations added

complications to decoration. As a result, the level where the decoration of a variable to be

put is not necessary the same as the level where this variableis processed.

www.manaraa.com

41

First, as shown in section 4.2.1, the iteration has its own internal structure represen-

tations. Loop has a collapse part and an advance part, the twoparts may share the same

variables. In addition, loop has rotation list. The variables in the rotation list maintain

the loop history, they need to be allocated before the loop starts. Therefore, the place-

ment of the allocation of rotation list is not in the loop graph, it is in the parent graph that

contains the loop as a super node. For example, in Figure 4.2,this level contains a super

node “SN4”, which is a loop. Therefore, allocation of the rotation list of “SN4” should

be placed at this level. When scheduling the loop, the collapse part is always scheduled

first, followed by the advanced part. Thus, the allocation ofthe shared variables between

the two parts is placed in the collapse part, and the deletionof these shared variables is

placed in the advance part. Each collapse part has a conditional node that computes the

final results of this loop, it is only scheduled and executed once, upon exit of the loop. The

recycling of the rotation list is therefore placed in the conditional node. In the last iteration

of the loop, the advance part is not scheduled, hence, the deletion of the shared variables

is not scheduled. An additional recycling of the shared variables is therefore placed in the

conditional node in the collapse part.

Loops also put constraints on recycling of conventional variables (i.e., variables that

do not belong to loop rotation list and loop shared variables). Figure 4.9 shows a possible

application control flow. There are two loops, which are nested, in the application. The

first loop is contained in a DAG as a subgraph and the inner loopcontains a DAG as a sub-

graph. Variablesv1, v2, v3, v4 are allocated indag1, loop1, loop2 anddag2 respectively.

www.manaraa.com

42

dag1
loop1

loop2v1

v2

v3 v4

dag2

Figure 4.9 Placement of Recycling

All the variables are consumed bydag2 only (possibly through promotion). Therefore,

dag2 is responsible for recycling of all the variables. The placement of deletion ofv3 and

v4 could be withindag2, which means we could deletev3 andv4 immediately afterdag2

consumes them. But the placement of deletion of variablesv1 andv2 cannot be inside

dag2. Althoughv2 is only consumed bydag2, it is allocated byloop1. When the applica-

tion runs,loop2 will be executed for several iterations, so isdag2. If v2 is deleted within

dag2, then in the next iteration ofloop2 anddag2, v2 is no longer available. Thus, the

deletion ofv2 should be placed after all execution (i.e., iteration) ofdag2. We choose to

deletev2 upon exit ofloop2. The placement is therefore in the conditional node within

the collapse part ofloop2. For the same reason, the placement of deletion ofv1 is in the

conditional node within the collapse part ofloop1.

www.manaraa.com

43

MLG-DEL-PLACE(v, vLevel, mlg)

1 loops ← GETPARENTLOOPS(vLevel, mlg)
2 � Count the number of all parent loops
3 loopsNum ← GETNUM (loops)
4 if loopsNum = 0
5 then return vLevel

6 else curLoop ← BOTTOM(loops)
7 � Get the allocation ofcurLoop and all its sub-nodes
8 alloc ← GETALLOC(curLoop)
9 if v ∈ alloc

10 then return vLevel

11 curLoop ← PARENT(curLoop, loops)
12 alloc ← GETALLOC(curLoop)
13 while v /∈ alloc andcurLoop 6= NIL

14 do curLoop ← PARENT(curLoop, loops)
15 alloc ← GETALLOC(curLoop)
16 if curLoop = NIL

17 then pLoop ← TOP(loops)
18 else pLoop ← CHILD (curLoop, loops)
19 pLevel ← CONDNODE(pLoop)
20 return pLevel

The algorithm for recycling placement of conventional variable in the multilevel

graph is given in procedure MLG-DEL-PLACE. It takes three parameters:v is the

variable to be deleted;vLevel is the level that handles deletion request;mlg is the

multilevel graph. MLG-DEL-PLACE returns the level that the deletion ofv should

be put. For example, forv2 in Figure 4.9, call to MLG-DEL-PLACE(v2, dag2, mlg)

would return theconditional nodeof loop2. Procedure MLG-DEL-PLACE works by

traversing the parent loop hierarchy starting fromvLevel and examines the alloca-

tion of the loop hierarchy. The procedure GETPARENTLOOPS returns all the par-

ent loops starts fromvLevel . If vLevel is itself a loop, it is also included in

the results. For example, for Figure 4.9, GETPARENTLOOPS(dag2, mlg) would re-

www.manaraa.com

44

turn [loop1, loop2]; GETPARENTLOOPS(loop2, mlg) would return [loop1, loop2] too;

GETPARENTLOOPS(dag1, mlg) would returnNIL . Procedure GETALLOC returns the al-

location of the given loop and all its sub-nodes. The result is used to test where the variable

v is allocated. Procedure CONDNODE returns the conditional node of the given loop.

4.4 Summary

This chapter presents the design and implementation of an automatic memory manage-

ment scheme for the Loci framework. The equivalence of memory management and the

multilevel graph decoration is first established. This is the fundamental idea for memory

management in Loci, it enables seamless integration of the memory management and the

Loci framework. The basis and main problems in decorating the multilevel graph are then

outlined. The variable recurrence relations and various implications of the loop structures

are discussed in detail.

www.manaraa.com

CHAPTER V

CHOMPING TECHNIQUE

This chapter describes a cache optimization scheme for the Loci framework based

on the work of dynamic memory management in chapter IV. This cache optimization

scheme is automatic, it does not require user intervention.The objectives of this cache

optimization scheme are to further reduce the memory requirement of an application and

also to increase the performance of Loci applications.

5.1 The Chomping Idea

The cache optimization for Loci is based on the idea ofchomping, or also known as

strip mining. A general strategy for cache optimization is to partition the data into small

chunks that can fit into the data cache and arrange the access pattern to these chunks so

that they stay in the cache as long as possible. Thus, data partitioning and accessing form

the central theme in the chomping technique for cache optimization in Loci.

In Loci, rules are elements of computation in an application. Rules produce and con-

sume variables. In an application, only the user queried variables are useful result, others

are all intermediate variables, their existence are to contribute to the final solution only.

Normally, a rule is computed once over its domain and the target variables are produced

45

www.manaraa.com

46

entirely. Since Loci variables are often containers that hold large amount of data, all the

intermediate variables are thus ideal candidate for data partitioning. In the cache opti-

mization scheme, we chomp the domain of a rule. Therefore, a rule is no longer computed

once, instead, the computation is broken into small sub-computations. In each of these

sub-computation, only part of the target variables are produced. This implies only partial

allocation is required for all the intermediate variables.Because these partial allocations

could be potentially small, they enhance cache utilizationand further reduce the memory

requirement.

A

B

C

D

B<-A

C<-B

D<-C

B

C

A

D

shift domain
&

repeat

Figure 5.1 The Chomping Idea

The basic chomping idea is illustrated in Figure 5.1. In the rule chain,A is the given

variable,D is the final result of the chain, bothB andC are intermediate variables. Before

the chain starts, the entire memory required forD is allocated, forB andC only small

chunks are allocated. Then the rule chain is executed iteratively. In each execution iter-

www.manaraa.com

47

ation, all the rules in the chain only execute over a sub-domain. The size of the domain

computed at each iteration equals the size of the allocated domain forB andC. D is there-

fore only partially computed. Then the domains of all the rules in the chain are shifted for

the computation of next iteration. The iteration of execution terminates until the entireD

is produced.

Normally, the chain of rules is executed only once over the entire domain of the rules.

With dynamic memory management, at least two entire containers need to be kept in the

memory at one time. With chomping, the required memory to be kept is the entire space

for D and part of the space forB andC. We can choose the size of the chunks forB and

C in memory, they can be less than one entire container. Therefore, the entire memory

required by chomping is even less than the space used in a normal run with dynamic

memory management. If the topological structure of the chain of rules are “flat”1, then the

memory savings are even more. On the other side, since the size of chunks forB andC

are small, they can fit into the data cache and stay inside it during an iteration execution

of the chain. Thus, the cache utilization is better than single run of the rule chain. If the

cache benefit is greater than the overheads of additional management in chomping, the

performance of the application will be improved.

The implementation of chomping borrows the idea of decomposition of the depen-

dency graph in the Loci scheduler. In each level of the multilevel graph, all the chain

of rules suitable for chomping are identified first. Then eachchain is substituted by a

1A flat chain means a chain that has rules that consume most of the chomped variables as input. When
topologically laid out, the chain looks “flat.”

www.manaraa.com

48

A

B

C

D

B<-A

C<-B

D<-C

A

D

ALLOCATE:D<-CREATE

DELETE:A<-DESTROY

CHOMP:D<-A

Figure 5.2 Implementation of Chomping

special vertex. This allows smooth integration of chompingand the dynamic memory

management scheme designed in chapter IV. As shown in Figure5.2, the graph decora-

tion required by dynamic memory management does not have to be aware of chomping.

Only in the execution phase, a special C++ class handles the management and execution

of the chomp rule. The chomp rule is regarded as Loci internalrule.

5.2 Searching for Chompable Subgraph

Identifying rule chains that are suitable for chomping is the central problem in the

implementation. Chompable rule chains do not cross the boundary of a single level in the

multilevel graph. Hence, the identification and replacement of rule chains occur in each

level of the multilevel graph.

In searching for chompable rule chains in each level, maps present a major complica-

tion. Recall from section 3.2, map models the relations between entities; composition of

www.manaraa.com

49

map and store models indirect access of store containers. Therefore, any store container

that involves maps cannot be chomped directly. Because store with maps means random

access of the store container. While in chomping, we only produce or consume part of a

container at each time. If a container needs to be random accessed, then we cannot antic-

ipate directly which segment of domain needs to be allocatedin chomping at each time.

Therefore, as a result, stores that involve any map need to beallocated entirely.

The searching algorithm consists of three steps: a preprocessing step, a merging step

and an optimization step. In the first preprocessing step, all variables in a DAG are catego-

rized into two classes: variables that are suitable for chomping (i.e., chomping candidates)

and variables not suitable for chomping. As discussed previously, because of the presence

of map, not all stores can be chomped directly. Those chomping candidates found in the

preprocessing step are the theoretical upper bound of the total number of variables in a

DAG that can be actually chomped.

The following merging step forms all chomping rule chains ina DAG. It works by

merging those chomping candidates found in the first step. The merging is based on several

properties in chomping.

• If a variable is chomped, then all rules connect to this variable must all been
chomped. Therefore, any two chomping candidate variables that share any rules can
be merged together to form a larger chain. This also implies that once the chomping
chain is formed, all intermediate variables inside the chain are invisible from outside
(i.e., no references to those variables from rules outside of the chain).

• The edited DAG that includes chomping rule chains must stillbe acyclic. This
restricts the merging algorithm. At some step, we may be forced to discard some
chomping candidate variables in order not to create cycles.

www.manaraa.com

50

• Any non-chompable variable cannot be an intermediate variable in the chomping
chain.

These merging guidelines are illustrated in following examples:

Y

W X

A

Z

21

3 4

chomp A

W X

Y Z

Figure 5.3 Chomping Property One

Figure 5.3 shows the invisibility of chomped variables and rules. In Figure 5.3, variable

A is chomped,1, 2, 3 and4 are rules that produce and consume variableA. The chomp

rule hides all of them, only variableW, X, Y andZ serve as sources and targets of this

chomp rule.

Real Loci applications often have complex relations between variables and rules. If

graph editing is not properly handled, cycles can be easily created. Figure 5.4 is such an

example. VariableB andC are chompable, whileD andE are non-chompable variables,

D is an ancestor ofE. If we chomp bothB andC, the resulting graph will look as the

right one in Figure 5.4. A cycle is therefore formed. In this case, we will have to discard

B, albeit it is a chomping candidate variable.

www.manaraa.com

51

A

C

F

E

B

1

2

3

4

subgraph

chomp

A

F D

E

subgraph

D

Figure 5.4 Chomping Property Two

A

B

D

C

E

1

2

3 map

produce

access

Figure 5.5 Chomping Property Three

www.manaraa.com

52

Figure 5.5 shows another complication. In the graph,B andD are both stores and are

chomping candidates. Rule3 access its source variableC through a map, thusC cannot

be chomped. If we chomp bothB andD, C will become an intermediate variable of the

chomping chain. This will have problem even if we allocateC entirely. Because rule3

accessC through a map, it is possible that the accessed region has notbeen computed yet.

In this case, we will have to discard eitherB or D from the chomping chain.

MERGE-CANDIDATES(gr, candV ars)

1 chains ← NIL

2 validCandVars ← candVars

3 while candVars 6= NIL

4 do begin ← POP(candV ars)
5 rules ← GETCONNECTEDRULES(gr, begin)
6 merge ← TRUE

7 while merge

8 do merge ← FALSE

9 mergedVars ← NIL

10 for vi ∈ candVars

11 do rs ← GETCONNECTEDRULES(gr, vi)
12 if rules ∩ rs 6= NIL

13 then g ← SUBGRAPH(gr, rules + rs)
14 if not HASPROBLEM(g)
15 then rules ← rules + rs

16 mergedVars ← mergedVars + vi

17 merge ← TRUE

18 candVars ← candVars −mergedVars

19 c ← SUBGRAPH(gr, rules)
20 POSTPROC(c)
21 return chains

The algorithm for merging is illustrated in MERGE-CANDIDATES. Given a DAG and

all chomping candidate variables, the algorithm first selects a variable from the candidates

and builds a smallest chain. Using this chain as the basis, the algorithm iterates through

rest of the candidates and merges them according to the guidelines discussed previously.

www.manaraa.com

53

The procedure HASPROBLEM tests for cycles and non-chompable internal variables. Pro-

cedure POSTPROC performs post processing on a formed chain before we finally accept

it. They are described in the following algorithms:

HASPROBLEM(g)

1 if CYCLE(g)
2 then return TRUE

3 ivs ← GETINTERNALVARS(g)
4 pvs ← ivs − validCandVars

5 if pvs 6= NIL

6 then return TRUE

7 return FALSE

POSTPROC(c)

1 cvs ← GETCHOMPEDVARS(c)
2 if SIZE(cvs) = 1
3 then if HASPROBLEM(c)
4 then v ← FIRST(cvs)
5 candVars ← candVars − v

6 validCandVars ← validCandVars− v

7 DISPATCHNOTIFY(v)
8 return
9 stvs ← GETSOURCETARGETVARS(c)

10 rmvs ← stvs ∩ candVars

11 candVars ← candVars − rmvs

12 validCandVars ← validCandVars− rmvs

13 validCandVars ← validCandVars− cvs

14 chains ← chains + c

DISPATCHNOTIFY(v)

1 rcs ← NIL

2 for ci ∈ chains

3 do invs ← GETINTERNALVARS(ci)
4 if v ∈ invs

5 then rcs ← rcs + ci

6 cvs ← GETCHOMPEDVARS(ci)
7 candVars ← candVars + cvs

8 validCandVars ← validCandVars + cvs

9 chains ← chains− rcs

www.manaraa.com

54

The purpose of POSTPROC is to prune thecandVars set according to the formed chain.

If the merged chain only has one chompable variable, then no other variables are merged

aside from the initial beginning variable. The chain is therefore not tested yet. It is then

checked by HASPROBLEM. Because MERGE-CANDIDATES does not perform other or-

ders of merging, if the chain failed in the testing, then the single chomped variable inside

it is treated non-chompable from that time. The procedure DISPATCHNOTIFY is used to

signal already formed chains of this change. It is needed here because this single vari-

able may already silently included into other chains. It is possible because a rule could

have multiple targets. When we form a subgraph from one target, other targets will also

been included into the subgraph. In DISPATCHNOTIFY, all previously formed chains are

searched. If any of them contains this particular variable as an internal variable, then the

chain is canceled and all chomped variables are pushed to thechomping candidates set

again.

If the formed chain has more than one chomped variables, it isthen already a valid

chain. Because at least one merge happened and therefore thethe chain was tested. But

since during the merging, some chomping candidates may not be merged into this chain

due to fail to pass the HASPROBLEM test, these variables will become either source or

target variables of this chain. Then part of the rules connect to these variables will be hid-

den by this particular chomping chain and no other references to these rules are allowed

from outside of this chain. Therefore, these variables can not be included in any future

formed chains and are taken off from the chomping merging candidates set. Note the dis-

www.manaraa.com

55

tinction of candVars andvalidCandVars in MERGE-CANDIDATES. VariablecandVars

is the chomping candidates set for merging, while the variable validCandVars is used

inside HASPROBLEM for testing invalid internal variables in a chomping chain.The dif-

ference between two variables is after thefor loop at line 10 in MERGE-CANDIDATES,

all merged chomping candidates in thefor loop are removed fromcandVars, while these

variables are removed from thevalidCandVars all together in POSTPROC (line 13). The

reason for this distinction is that during the merging process, when a chain is checked

through HASPROBLEM, the already merged variables in this chain are still valid.In a

sense thatvalidCandVars records the still valid variables that can be chomped when we

start a new merge at line 4 in MERGE-CANDIDATES.

In the merging step, we may discard some of the chomping candidates due to cycles

and non-chompable variables being internal variables of a chain. This is a combinatorial

searching problem, the algorithm described here does not perform an exhaustive search-

ing. Under certain circumstances, it may discard more variables than it should. Thus a final

optimization pass is added with the hope of getting back someof those lost variables. The

optimization works similar to the merging step. But we iterate through all chains, if any

two chains share any chomping candidates, we may test and merge them together. Because

these “boundary” chomping candidate variables may be overlooked in the merging. The-

oretically, the optimization algorithm may suffer the sameproblem as in merging. They

may still miss valid chompings. But since we are testing and merging between chains, the

www.manaraa.com

56

problem space is reduced significantly, therefore the chances for missing valid chompings

are greatly reduced.

The run-time complexity for the merging algorithm (includes the optimization) is

O(n2(V + E)), wheren is the number of chomping candidates in a given DAG andV, E

are the number of vertices and the number of edges of the givenDAG respectively. This

algorithm runs well in practical, both the running time and the searching results are of

satisfactory for large Loci applications.2

chomprule1 chomprule2

chain2chain1

chain1 chain2

chomprule1 chomprule2

chain1
chain2

chomprule1

chomprule2

chain1

chain2

chomprule1

chomprule2

Figure 5.6 Positions of Chomp Chains in A DAG

After the search finishes, each chomping rule chain will be substituted by a special

chomp rule in the DAG. The merging step guarantees a single chomping rule chain sub-

stitution will not create cycle in the DAG (all chains have passed the cycle testing). The

merging step also guarantees two chains will not have intersections except for source or

target vertices. Therefore, the relations of two chains in the DAG can be categorized into

four possible cases as shown in the top part in Figure 5.6. Thebottom part in Figure 5.6

2See chapter VII for results analysis.

www.manaraa.com

57

shows the graph editing results. We can conclude no cycles will be introduced by graph

editing.

5.3 The Chomping Size

The chomping size is the total allocation size for all of the chomped variables in a

chain. In the implementation, it is chosen to be approximately half the size of the data

cache. Because chomping is not exactly the same as traditional matrix blocking. In chomp-

ing, the source and target variables are not chomped, they could be large and they may also

have access of data through maps. In the implementation, theuser can also specify a par-

ticular chomping size before the program starts.

5.4 Summary

In this chapter, a cache optimization scheme is proposed forthe Loci framework. It

is based on the idea of chomping, or strip-mining. The computation of a rule in Loci

application is broken into multiple small sub-computations. These sub-computations may

help to improve cache utilization and reduce memory requirement. The algorithm that

discovers chomping chains is discussed in detail.

www.manaraa.com

CHAPTER VI

SCHEDULING POLICIES

This chapter presents a new scheduling policy for directed acyclic graphs in Loci. This

new policy will improve memory performance of an application with the cost of increased

frequency of communication points in the scheduled program.

6.1 Relations Between Memory Utilization and Communication Costs

The fundamental strategy for memory management is outlinedin chapter IV. The re-

lations of managing memory and directed graph decoration isestablished. The multilevel

graph is decorated with memory management instructions; but it only specifies a depen-

dency relation for the vertices. It is up to the scheduler to generate a particular execution

order that satisfies the dependency relation. Different scheduling results in different in-

terleaves of allocation, computation, and recycling. Fromthe memory utilization point of

view, the order to schedule allocation and recycle affects the peak memory requirement

of the application. An optimized schedule for memory usage will reduce the application

peak memory requirement to an absolute minimum. Therefore in exploring the relations

between memory management and parallel overheads, the basic question is: What impact

does optimizing memory management have on the parallel computation schedule?

58

www.manaraa.com

59

Loci is a data-parallel programming system. In a data-parallel program, each process

executes the same instructions on its own local data set. After certain amount of work,

each process participates in a global synchronization, where all processes synchronize

their work and exchange information. For a Loci application, synchronization is needed

for targets of pointwise rule. This means for every step in the schedule, there will be

a barrier on target variables of all pointwise rules. From this communication point of

view, different schedule may create different numbers of synchronization points. With

respect to parallel overhead, less synchronization is preferred. For an application, the

number of synchronization points does not change the total volume of data communicated.

But in a schedule with less synchronization, more computations happen at each step and

more variables are generated at each step. Thus we can group more data together in a

synchronization point and this helps to save the start-up cost in communication.

D C

E

S

AF

B

1 2

5

4

3

DAG

1 2 3

4

5

barrier

barrier

Schedule 1

1 2

3

4

5

barrier

barrier

Schedule 2

barrier

A B F

E

A B

E

F

Figure 6.1 Different Scheduling for A DAG

www.manaraa.com

60

With dynamic memory management, if we want to minimize the peak memory re-

quirement for an application, then the resulting schedule will increase the total number

of synchronization points. On the other side, if we want to minimize the total number

of synchronization points for an application, then the resulting schedule will use more

memory.

Figure 6.1 illustrates the effect of different scheduling of a DAG. Schedule one is

greedy on computation in the application, while schedule two is greedy on the memory

usage of the application. In schedule one, it schedules all possible rules to execute in a

step. Therefore, more variables are generated, potentially increase the peak memory usage.

But in the first step, more variables can be grouped together,saving synchronization points.

In schedule two, only necessary rules are scheduled at each step, then less variables are

generated, potentially reduce the peak memory usage. But insuch a schedule, variables

are spread over more scheduling steps, hence more synchronization points are needed.

From Figure 6.1, we can see the total volume of data communicated is the same in two

schedules. Both are variablesA, B, E andF , but the grouping of communication for these

variables is different.

Therefore, optimizing memory management will create more synchronization points

in the application, hence more communication start-up costs and result in a slow program.

On the contrary, attempting to minimize the synchronization points in an application will

result in a fast program with more memory usage. Thus, trade-offs exist in such system

and can be customized under different circumstances. For example, if memory is the

www.manaraa.com

61

limiting factor, then a memory optimization schedule is preferred. In this case, speed is

sacrificed for getting the program run. On the other hand, if time is the major issue, then

a computation greedy schedule is preferred. Users have to supply more memory for the

speed.

6.2 Memory Greedy Scheduling

The current scheduler in Loci is greedy on computation. It schedules every vertex

in the DAG that can be scheduled in a step and therefore minimizes the synchronization

points. It will produce schedules similar to schedule one inFigure 6.1. In order to examine

and verify the trade-offs discussed previously, an alternative scheduler is added to Loci. It

tries to minimize the memory usage of an application.

An optimal schedule for memory management is a combinatorial problem and requires

exhaustive search in the DAG. The Loci scheduler is part of the run-time system, thus a

fast algorithm is needed. We use a greedy algorithm in the alternative scheduler and rely

on heuristics to choose vertices to schedule in the DAG. The algorithm is described in the

following procedures:

www.manaraa.com

62

LOCI-GRAPH-SCHEDULER(gr)

1 grt ← TRANSPOSE(gr) � Transpose the graph
2 � Initialize priority,V is all vertices ingr
3 � The smaller the weight, the higher the priority
4 for vi ∈ V
5 do p[vi]← 0
6 PRIOGRAPH(gr)
7 sched ← NIL � The Schedule
8 visited ← NIL � Visited vertices set
9 � We start off from all source vertices in the graph

10 wait ← GETSOURCE(gr)
11 while wait 6= NIL

12 do q ← ENQUEUE(wait)
13 vs ← NIL

14 while q 6= NIL andvs = NIL

15 do vs ← POP(q)
16 vs ← GETVALID SCHED(vs)
17 if q = NIL andvs = NIL

18 then error “graph has cycles”
19 else wait ← wait − vs

20 new ← GETNEW(vs)
21 wait ← wait + new

22 visited ← visited + vs

23 sched ← APPEND(sched, vs)
24 return sched

GETVALID SCHED(vs)

1 valid ← NIL

2 for vi ∈ vs

3 do pre ← SUCCESSOR(grt, vi)
4 if pre ∈ visited

5 then valid ← valid + v

6 return valid

GETNEW(vs)

1 new ← NIL

2 for vi ∈ vs

3 do next ← SUCCESSOR(gr, vi)
4 new ← new + next

5 return new

www.manaraa.com

63

PRIOGRAPH(gr)

1 � Memory greedy prioritize
2 � Initialization
3 l ← NIL

4 for vi ∈ V
5 do a ← ALLOCNUM (vi)
6 d ← DELNUM(vi)
7 o ← TARGETOUTEDGENUM (vi)
8 l ← APPEND(l, (vi, a, d, o))
9 prio ← 0

10 for i← 1 to LENGTH(l)
11 do s← l[i]
12 if s .a = 0
13 then p[s.vi]← prio

14 ERASE(l, l[i])
15 prio ← 1
16 � Sort l according to ascending order ofa

17 SORT(l, ASCEND(a))
18 � Stable sortl according to descending order ofd
19 STABLESORT(l, DESCEND(d))
20 for i← 1 to LENGTH(l)
21 do s← l[i]
22 if s .d 6= 0
23 then p[s.vi]← prio

24 ERASE(l, l[i])
25 prio ← prio +1
26 � Sort l according to ascending order ofo

27 SORT(l, ASCEND(o))
28 for i← 1 to LENGTH(l)
29 do s← l[i]
30 p[s.vi]← prio

31 prio ← prio +1

The procedure LOCI-GRAPH-SCHEDULER is a generic scheduling infrastructure for

Loci. It schedules the graph according to the weight of each vertex. It only knows the

topological structure and the weight of vertices. LOCI-GRAPH-SCHEDULER starts off by

building the waiting set to schedule from all of the source vertices in the graph. Then each

time, a priority queue is built for thewait vertex set according to the priority of each vertex

www.manaraa.com

64

insidewait . The procedure ENQUEUE forms the priority queue forwait . The scheduler

tries to schedule vertices with highest priority each time.It uses a POP function and checks

the dependency constraints until it finds a set of vertices toschedule. Note, different than

usual priority queue, the POP function here pops all vertices with the highest priority from

the queue, not just one at each time. If the input graph has cycles, then eventually nothing

can be scheduled while we still have a set ofwait vertices. The scheduler reports error in

that case. Otherwise, it appends the schedule with the selected vertex set in the previous

step and modify thewait set accordingly. Scheduled vertices are removed fromwait ,

and new vertices reachable from the scheduled one are added to wait . The scheduler will

always terminate. If the input graph has cycles, eventuallythe scheduler will discover the

error and stop. If the input graph is a DAG, the scheduler always schedules something at

each step. The graph has finite number of vertices. Thereforeat certain point, there are no

new vertices introduced into thewait set, and the scheduler will stop when it consumes

all vertices insidewait . The run-time complexity of LOCI-GRAPH-SCHEDULER largely

depends on the PRIOGRAPH function at line 6.

With this scheduling infrastructure, the computation greedy schedule and memory

greedy schedule only differ from how to provide the vertex priority. The current com-

putation greedy scheduling can be viewed as having a PRIOGRAPH function that sets all

vertices with the same weight.

The algorithm for the memory greedy scheduling relies on theuse of heuristic. The

heuristic is designed to try to minimize the memory usage at each scheduling step. It

www.manaraa.com

65

should also be simple enough that does not introduce excessive overhead to Loci. The

basic idea of the heuristics are illustrated as following: In a given graph, variables and

rules that do not cause memory allocation have the highest priority and are scheduled first.

They are packed into a single set in the schedule. If no such vertices can be scheduled,

then we must schedule rules that cause allocation. The remaining rules are categorized.

For any rule that causes allocation, it is possible that it also causes memory deletion.

We schedule one such rule that causes most deletions. If multiple rules have the same

number of deletion rules attached, we schedule one that causes fewest allocations. Finally,

we schedule all rules that do not meet the previous tests, oneat a time with the fewest

outgoing edges from all of its target variables. This is based on the assumption that the

more outgoing edges a variable has, the more places will it beconsumed, hence the longer

lifetime will this variable have.

The algorithm is shown in PRIOGRAPH. We start off from building a list that contains

statistical information for every vertex. For each rule, the number of allocation rules at-

tached, the number of deletion rules attached, and the number of outgoing edges for all

of its target variables are collected respectively as shownbetween line 5 and line 7. For

variables, all these numbers are just0. Then we looping over the list, for any vertex with

no allocation number, we set the highest priority for it. They all get assigned with priority

0 because we want them to be scheduled together. We also removethese finished vertices

from the list. We then sort the list. The first sorting is basedon the ascending order of

allocation number, and the second sorting is based on descending order of deletion num-

www.manaraa.com

66

ber. This is the same meaning as in the previous description of the heuristic. Because at

this stage, all vertices in the list cause allocation, we want to schedule the one that lead to

most deletions and has fewest allocations if there are multiple vertices with same number

of deletions. Stable sort is required in the second sorting to keep the relative order from the

first sort. After sorting, we looping over the list again, forany one with non-zero deletions,

we assign priority to it. Note, this time the priority is increased one at a time because we

only want one vertex to be scheduled at each time from now on. We again remove finished

vertices from the list. Finally we sort the list according tothe outgoing edge numbers and

set corresponding weight for each remaining vertex. The algorithm terminates with all

vertices processed. It has a worst case run-time complexityof O(V +E +V lgV) and best

case run-time complexity ofO(V +E). V andE are the number of vertices and edges for

the input graph respectively. In worst case, the sorting dominates the runtime.

When counting numbers of allocation rules and deletion rules, only allocate and delete

of store variables are counted. Stores are the only non-trivial variables in present Loci.

This scheduling tends to minimize memory usage, but it also increases the synchronization

points. Because for rules that cause allocation, only one ofthem are chosen at a scheduling

step. The target variables are distributed more sparsely inthe schedule, and therefore more

synchronization points are needed.

www.manaraa.com

67

6.3 Summary

This section briefly presents the relations between memory management and parallel

communication costs. An optimized schedule for memory usage will likely increase the

parallel communication costs. On the contrary, an optimized schedule for communication

will likely increase the memory bound for an application. These trade-offs can be cus-

tomized to different application requirements. An alternative memory greedy scheduler

for Loci is also presented in detail in this chapter.

www.manaraa.com

CHAPTER VII

RESULTS

This chapter presents the experimental results of the dynamic memory management

scheme proposed in this thesis. Some analyses are also givenas the results are presented.

7.1 The Evaluation Methods

The evaluation of the dynamic memory management scheme consists of four parts:

performance evaluation of algorithms, space profiling, performance profiling, and charac-

terization of the trade-offs in memory utilization and communication costs, if any. First,

we conduct a measurement on the performance and behavior of all the algorithms devel-

oped in this thesis. Then, in space profiling, the benefits of using dynamic memory man-

agement are measured in detail. This includes how much spacesaving can be achieved by

using dynamic memory management, chomping, and memory greedy scheduling respec-

tively when comparing with the preallocation scheme. In performance profiling, the run-

time performance of Loci applications are measured under different memory management

configurations. This examines the run-time overhead associated with dynamic memory

management, the performance improvements due to cache benefits by using chomping. In

68

www.manaraa.com

69

the last part, the parallel performance versus memory usageare measured under different

schedulers.

The evaluation is mainly based on two applications: the CHEM program and the FU-

ELCELL program. Both of them are chemistry solvers but for different problem domains.

Both applications are developed using the Loci framework and are being used to solve real

world engineering problems.

The space and performance profiling are conducted on both sequential and parallel

architectures. The trade-offs between memory utilizationand communication costs are

measured on parallel machines. For sequential testing, an SGI Challenge 10000 XL (8

195MHz R10000 processors with 2 Gigabytes of RAM), an Intel Pentium 4 PC (2GHz

with 512 Megabytes of RAM, running on Linux), a single node onan IBM Linux Cluster

(see below), and an Intel Pentium III PC (1.2GHz dual processors with 1.2 Gigabytes of

RAM, running on linux) are used. For parallel testing, an SGIOrigin 2000 (64 195MHz

R10000 processors with 32 Gigabytes of RAM) and an IBM Linux Cluster (total 1038

1GHz and 1.266GHz Pentium III processors on 519 nodes, 607.5Gigabytes of RAM) are

used. On the SGI machines, the applications are compiled using the SGI CC compiler. On

Intel PC, the GNU g++ compiler is used.

7.2 Issues in Evaluation

Loci uses the system allocatormalloc at the lowest level. Usually the system call

brk is used insidemalloc to ask for heap space from the operating system.malloc

www.manaraa.com

70

usually asks for a large block of memory frombrk call, and then it partitions the block

and supplies space for application requests. The same strategy is used when freeing mem-

ory. malloc aggregates large enough amount of blocks and then callsbrk to shrink the

heap space. This caching strategy is helpful for performance improvement becausebrk is

an expensive system call. In the GNU C library, by default,malloc requests large allo-

cation through themmap call to find addressable memory space. The difference frombrk

call is that the memory allocated throughmmap, once freed, is immediately returned to the

operating system. The advantage of this approach is that it helps to reduce memory frag-

mentation and makes large memory available to system faster. But from the measurement

point of view, this introduces unpredictable operating system overhead into the program.

We try to avoid such random overheads in the measurement. Therefore on all the Linux

testing platforms, we disabled themmap mechanism inmalloc so that it always uses

brk call to ask for memory. We also set thebrk return threshold to be large enough that

malloc never callsbrk to return memory to the operating system.1

In space profiling, factors such as additional message buffer in the program, memory

fragmentation, and the quality of memory allocator, etc. all affect the measured memory

bound. In order to know the exact benefit from dynamic managing memory for variables

in applications, we also perform bean-counting2 on memory usage. A memory profiler is

implemented for Loci. When activated, the memory profiler collects heap size information

1This is done by setting the environmental variablesMALLOC TRIM THRESHOLD and
MALLOC MMAP MAX .

2By bean-counting we mean tabulating the exact amount of memory requested from the allocator.

www.manaraa.com

71

and also computes bean-counting memory bounds. Both real measurement and bean-

counting measurement results are presented in the following sections.

7.3 Measurement Results

In the following tables and figures, if not otherwise specified, applications running

with preallocation is abbreviated aspre, applications running with dynamic memory man-

agement is abbreviated asdmm, and applications running with dynamic memory manage-

ment and chomping is referred to aschomp(note the chomping is used together with the

dynamic memory management). Computation greedy schedule is abbreviated ascomp

greedy, and memory greedy schedule is abbreviated asmem greedy. Real measurement

number is referred to asreal, and bean-counting number is referred to asbc. The CHEM

program can be configured to run under four different modes: implicit time method, im-

plicit time method with chemistry model, explicit time method, and explicit time method

with chemistry model. They are abbreviated as CHEM-I, CHEM-IC, CHEM-E, and CHEM-

EC respectively. Measurements are conducted for all four modes. Because the implemen-

tation of the FUELCELL program is different than the CHEM program, we are only able to

chomp one variable for the testing problem. Therefore, we donot measure the chomping

option for the FUELCELL program. In the space and performance profiling sections, we

mainly present the sequential measurement results. Because Loci is data-parallel, in the

parallel case, each process executes the same program with asmaller dataset. The parallel

results are essentially the same.

www.manaraa.com

72

7.3.1 Loci Scheduler Statistics

Because Loci does the assembly and scheduling all at run-time, anything added into

Loci should not severely degrade the performance of Loci scheduler. Therefore we first

measure the run-time performance and behavior of the algorithms developed in this thesis

in addition to application performance measurements.

Table 7.1 Statistics of Loci Scheduler

unit: second CHEM-I CHEM-IC CHEM-E CHEM-EC
dmm decoration 0.5188 0.5402 0.3540 0.3656
searching and
forming of 0.3595 0.3760 0.2620 0.2749
chomping chains
comp greedy
schedule 0.0101 0.0103 0.0070 0.0071
mem greedy
schedule 0.1270 0.1350 0.0682 0.0693
total Loci
schedule timea 10.8339 10.9706 7.4180 7.5380

aThis is the total time when using comp greedy schedule, usingmem greedy schedule will have a similar
result. This total time is the sum of Loci graph processing time and the existential analysis time.

Table 7.1 shows the run-time performance for various stagesof the Loci scheduler

under four different configurations for the CHEM program. This measurement is conducted

on a 2GHz Intel Pentium 4 PC with Linux . The problem chosen is the same as the one

used in the following space profiling and timing. Although this is a modest size problem

that could be run on a single processor, it is of typical complexity in applications built using

www.manaraa.com

73

Loci. The graph processing part of Loci only depends on the complexity of applications

(i.e., the number of rules and variables involved), not the problem size (i.e., the size of

variables). The algorithms discussed in this thesis belongto the graph processing part of

Loci. Hence, they are independent of problem size.

From Table 7.1, we can conclude all algorithms developed in this thesis only add small

amount of overhead to the Loci scheduler. Typical runtime ofLoci applications range from

several hours on a single processor to several days on large parallel machines. Therefore

this amount of overhead is negligible. We also noticed the memory greedy schedule al-

gorithm usually runs an order of magnitude slower than the computation greedy schedule.

This is because more complex heuristics are used in the memory greedy scheduling. While

the computation greedy scheduling only performs pure graphprocessing, or it could be re-

garded that each vertex has the same weight.

We next perform a measurement on the outcomes of the chompingsearching and form-

ing algorithm discussed in section 5.2 chapter V. Because iftoo many chompable vari-

ables are missed by the algorithm, we cannot get sufficient benefit from chomping. Thus

the quality of this algorithm plays an important role in the chomping technique.

Table 7.2 shows the results of the algorithm for the same problem used in Table 7.1.

In the table, “total variables” refers to all the variables that are allocated in the program,

this does not include any input variables. The “upper bound of chompable variables”

is the number of chomping candidates in the program. This represents an upper bound

on the number of variables that can be chomped in the program.However, relationships

www.manaraa.com

74

Table 7.2 Statistics of chomped variables

CHEM-I CHEM-IC CHEM-E CHEM-EC
total variables 192 196 162 166
upper bound
of chompable 47 49 49 51
variables
number of
chomped variables 40 42 44 47
% of the size of
chomped variables 32.25 32.39 44.74 51.03
in total variables

between rules and variables may force us to discard some chompable variables. This is the

major task performed in the searching and forming algorithm. We do not know whether

the results of our algorithm for this problem are optimal, but they are good enough for

practical use. Considering the size of the variables discovered by the algorithm, from

the memory management point of view, doing chomping alone would save considerable

amount of memory.

7.3.2 Space Profiling Results

The main objective of having memory management is to save memory. In comparing

the memory bound, the measurements of application running with preallocation serve as

the baseline. Preallocation could be regarded as the upper bound of memory usage for a

program. For all the measurements in space profiling, we useda default 128KB chomping

www.manaraa.com

75

size for all applications running with chomping. Because from the space profiling point of

view, the chomping size does not affect the memory bound in a noticeable way.

94.4

82.3

69.8 69.4

66.2

62 61.8
59.2

50

55

60

65

70

75

80

85

90

95

100
%

 o
f S

pa
ce

 U
se

d
C

om
pa

rin
g

to
 P

re
al

lo
ca

tio
n

dmm comp greedy (real)
dmm mem greedy (real)
chomp comp greedy(real)
chomp mem greedy (real)
dmm comp greedy (bc)
dmm mem greedy (bc)
chomp comp greedy(bc)
chomp mem greedy (bc)

Summary of Space Profiling on Linux
Chem-I

Figure 7.1 Summary of Space Profiling on Linux (Chem-I)

Figure 7.1 to Figure 7.4 summarize the space profiling results for CHEM on Linux.

They are performed on a single node on the IBM Linux Cluster.

Figure 7.5 and Figure 7.6 summarizes the space profiling results for CHEM on SGI.

The reason that we do not include the results for CHEM-I and CHEM-IC is that we noticed

on SGI, when CHEM running with dynamic memory management and dynamic memory

management with chomping under these two modes, the real measured memory usages

exceed the bound of preallocation significantly. During themeasurement, we also noticed

when running under these two modes with “dmm” and “chomp”, the memory bound will

www.manaraa.com

76

92.4

85.5

67.6 67.3

70.8

67

62.5

58.3

50

55

60

65

70

75

80

85

90

95

100

%
 o

f S
pa

ce
 U

se
d

C
om

pa
rin

g
to

 P
re

al
lo

ca
tio

n

dmm comp greedy (real)
dmm mem greedy (real)
chomp comp greedy(real)
chomp mem greedy (real)
dmm comp greedy (bc)
dmm mem greedy (bc)
chomp comp greedy(bc)
chomp mem greedy (bc)

Summary of Space Profiling on Linux
Chem-IC

Figure 7.2 Summary of Space Profiling on Linux (Chem-IC)

84.9

72.1

61.4
59.3

68.7

58.7

50.5
49.1

45

50

55

60

65

70

75

80

85

90

95

100

%
 o

f S
pa

ce
 U

se
d

C
om

pa
rin

g
to

 P
re

al
lo

ca
tio

n

dmm comp greedy (real)
dmm mem greedy (real)
chomp comp greedy(real)
chomp mem greedy (real)
dmm comp greedy (bc)
dmm mem greedy (bc)
chomp comp greedy(bc)
chomp mem greedy (bc)

Summary of Space Profiling on Linux
Chem-E

Figure 7.3 Summary of Space Profiling on Linux (Chem-E)

www.manaraa.com

77

83.9

73

53.7
52

67.8

63.9

46.9 46
45

50

55

60

65

70

75

80

85

90

95

100

%
 o

f S
pa

ce
 U

se
d

C
om

pa
rin

g
to

 P
re

al
lo

ca
tio

n

dmm comp greedy (real)
dmm mem greedy (real)
chomp comp greedy(real)
chomp mem greedy (real)
dmm comp greedy (bc)
dmm mem greedy (bc)
chomp comp greedy(bc)
chomp mem greedy (bc)

Summary of Space Profiling on Linux
Chem-EC

Figure 7.4 Summary of Space Profiling on Linux (Chem-EC)

93.4

81

64.4 63.9

68.7

58.4

50.5
49.1

45

50

55

60

65

70

75

80

85

90

95

100

%
 o

f S
pa

ce
 U

se
d

C
om

pa
rin

g
to

 P
re

al
lo

ca
tio

n

dmm comp greedy (real)
dmm mem greedy (real)
chomp comp greedy(real)
chomp mem greedy (real)
dmm comp greedy (bc)
dmm mem greedy (bc)
chomp comp greedy(bc)
chomp mem greedy (bc)

Summary of Space Profiling on SGI
Chem-E

Figure 7.5 Summary of Space Profiling on SGI (Chem-E)

www.manaraa.com

78

96.1

88.5

55.4
57.5

67.8

63.9

46.9 46
45

50

55

60

65

70

75

80

85

90

95

100

%
 o

f S
pa

ce
 U

se
d

C
om

pa
rin

g
to

 P
re

al
lo

ca
tio

n

dmm comp greedy (real)
dmm mem greedy (real)
chomp comp greedy(real)
chomp mem greedy (real)
dmm comp greedy (bc)
dmm mem greedy (bc)
chomp comp greedy(bc)
chomp mem greedy (bc)

Summary of Space Profiling on SGI
Chem-EC

Figure 7.6 Summary of Space Profiling on SGI (Chem-EC)

gradually increase as the program runs. The reason for this abnormal behavior is still under

investigation, and we leave it for future work. Our current explanation is that the allocator

from the SGI compiler has serious fragmentation problems under these circumstances.3

Fragmented memory cannot be reused and is not returned to thesystem, thus it has to

repeatedly ask for memory from the operating system which inturn causes the memory

usage increase as the program runs.

Table 7.3 shows the space profiling results of the FUELCELL program on the Intel Pen-

tium III PC. We do not have a compilation of the FUELCELL program for SGI, therefore

we only give measurements on Linux.

3Our code has passed a memory debugger under Linux.

www.manaraa.com

79

Table 7.3 Space Profiling results for FUELCELL on Linux

comp greedy mem greedy
unit: MB real bc real bc
pre 268.247 179.163 268.876 179.163
dmm 212.446 98.448 208.110 98.448

From the results, we can conclude using dynamic memory management helps to save

memory. For CHEM, the saving ranges from roughly4%–50%, depending on program

configurations and the memory management options.

We also noticed when using “dmm” alone, the memory savings are typically not sig-

nificant, especially when using computation greedy scheduling. However the theoretical

numbers (the bean-counting results) indicate a more aggressive outcome. Our explanation

to this is that the quality of allocator matters. For using “dmm” alone, the allocations tend

to be large, the fragmented memory cannot be reused and causes a large peak memory.

The results of “dmm” with memory greedy scheduling and “chomp” support this argu-

ment. We noticed a significant reduction of peak memory when using “chomp” compared

to the corresponding case under “dmm” alone. While their bean-counting numbers show

much smaller gaps. In chomping, not only does the program consume less memory, but

also the allocation for chomped variables tend to be small. They therefore are less affected

by memory fragmentation, since small blocks could possiblyfit into fragmented memory.

From the profiling results, we can see the bean-counting numbers for “dmm” with com-

putation greedy scheduling and “dmm” with memory greedy scheduling typically differ

www.manaraa.com

80

within 5%, while the differences between real measured numbers are usually more than

10%. Because the memory greedy scheduling is more aware of the memory usage, the al-

location and deletion patterns are different than those in the computation greedy schedule.

This difference also contributed to alleviate the memory fragmentation problem.

Table 7.3 suggests a large amount of memory is wasted in the FUELCELL program,

even under preallocation. In “dmm,” the bean-counting peakmemory is only around46%

of the real measured peak. Part of this is due to the use of external solver in the FUELCELL

program. The external solver may use and manage its own memory, and we did not count

that part. We also noticed, for the FUELCELL program, memory greedy scheduling yields

no obvious difference than computation greedy scheduling.This also indicates that the

design of a program affects the memory bound. In order to maximize the advantage of

dynamic memory management, it is suggested that one should try to use more variables in

a program with approximately identical size and relativelyshort lifetime.

From the space profiling results, we conclude a good allocator is necessary to take

advantage of the dynamic memory management. The fragmentation problem significantly

affects the memory bound and the practicability of dynamic memory management. But

we also discovered that chomping can greatly reduce the memory fragmentation problem

under most cases. The reason is that chomping reduces the number of large allocations

and the chomped variables can fit into fragmented memory moreeasily. From this point

of view, it is also suggested that in the program design, using small size variables helps

to alleviate the memory fragmentation problem. As an example, from the space profiling

www.manaraa.com

81

results for CHEM on Linux, the “dmm” results are less suffered from memory fragmenta-

tion under CHEM-E and CHEM-EC modes compared to CHEM-I and CHEM-IC modes.

Because under CHEM-E and CHEM-EC modes, the size of variables are much smaller

than those in CHEM-I and CHEM-IC modes. Fragmentation is a major problem in alloca-

tor design and largely affects the quality of the allocator.Thus our space profiling results

suggest if one has no choice of the allocator, then using memory greedy scheduling and

chomping can alleviate the fragmentation problem.4

7.3.3 Performance Profiling Results

In this section, the timing results of dynamic memory management and chomping are

presented and discussed. These results reflect the amount ofrun-time overhead associated

with dynamic memory management and the benefit from chomping.

Figure 7.7 and Figure 7.8 summarize the timing results for CHEM on Linux (measured

on a single node on the IBM Linux Cluster) and SGI respectively. The timing results for

dynamic memory management and chomping are shown as relative speed to preallocation.

Various chomping sizes are selected for testing with chomping. Table 7.4 exhibits the

results for FUELCELL program on Linux.

During our measurement of timing on Linux, we found the results usually have large

variations, depending on system and program configurations. We do not yet fully under-

4Enabling the “mmap” mechanism in GNU C library can also partially alleviate the fragmentation prob-
lem, since large memory blocks are allocated through “mmap”and are immediately returned to the system
when freed.

www.manaraa.com

82

16 32 64 128 256 512 1024
Chomping Size (KB)

90

92

94

96

98

100

102

104

106

108

110

%
 o

f T
im

e
U

se
d

C
om

pa
rin

g
to

 P
re

al
lo

ca
tio

n Chem-I chomp
Chem-IC chomp
Chem-E chomp
Chem-EC chomp

Summary of Timing on Linux
For the Chem Program

dmm results
Chem-I: 115.2%
Chem-IC: 100.1%
Chem-E: 101.9%
Chem-EC: 100.0%

Figure 7.7 Summary of Performance Measurement for CHEM on Linux

16 32 64 128 256 512 1024
Chomping Size (KB)

90

92

94

96

98

100

102

104

%
 o

f T
im

e
U

se
d

C
om

pa
rin

g
to

 P
re

al
lo

ca
tio

n Chem-I chomp
Chem-IC chomp
Chem-E chomp
Chem-EC chomp

Summary of Timing on SGI
For the Chem Program

dmm results
Chem-I: 100.1%
Chem-IC: 97.1%
Chem-E: 100.7%
Chem-EC: 101.4%

Figure 7.8 Summary of Performance Measurement for CHEM on SGI

www.manaraa.com

83

Table 7.4 Timing results for FUELCELL on Linux

unit: second time
pre 107.204
dmm 106.404

stand the reason for this result. We found the Linux operating system seems to be more

actively involved when a program is running. There may existother interactions between

the operating system and the application program that we were not aware of. We leave

the investigation as one of the future work. On the SGI architecture, the timing results are

more consistent. On the SGI, applications with dynamic memory management is gener-

ally slightly slower than applications with preallocation, except for in one case (CHEM-

IC), “dmm” is faster. From the measured data, we conclude forapplication with dynamic

memory management, the run-time overhead is reasonable. Onthe SGI architecture, the

largest overhead observed is about1.4%. On Linux, only in CHEM-I, there is considerable

amount of overhead. Other results are typically close to thepreallocation measurement.

The reason for large overhead in CHEM-I is unknown and in fact it is possibly due to

random system interactions.5 As stated, these issues are left for future study.

The timing results for chomping show that typically speedupis achieved, the perfor-

mance of applications with chomping outperform the performance of applications with

preallocation. But overall the speedup of chomping is belowour expectation. There might

5Apparently it is not caused by short periodical system interruptions. For each data point in the figures,
we took 10 sample measurements and there are no obvious deviations between all of the samples.

www.manaraa.com

84

be several possible reasons. First, complex system interactions may destroy the chomping

benefit, especially on the Linux operating system. Second, the study of chomping pre-

sented in this thesis provides an infrastructure that supports the chomping idea, there are

other issues that are not considered. For example, the LinuxPC and SGI server used in

these testing cases have a 512KB level 2 data cache and a 2MB unified secondary cache.

But we noticed the optimal chomping size is usually 32KB on Linux and 64KB to 256KB

on the SGI, which is far below the cache size. This indicates our chomping strategy has

other overheads. For example, as discussed in section 5.3 chapter V, the source and target

variables in the chomp chain may present a considerable amount of overhead in chomping.

These issues may adversely affect the performance of chomping, and they are candidates

of our future study.

Table 7.5 Timing under Swapping for CHEM on Linux

memory (MB) swap (%) time (s)
pre (10 iter) 700.331 50 2937.32
dmm (10 iter) 645.135 50 2445.59
chomp (128KB) (10 iter) 470.651 16 709.025
chomp (128KB) (120 iter) 470.651 48.4 7918.03

As an additional study to the potential benefit of chomping, we present at here an ex-

treme case: the performance comparison of application withpreallocation and chomping

under swapping condition. This is measured on an Intel Pentium 4 PC with 512MB of

RAM. CHEM is configured to run under implicit time method with chemistry model with

www.manaraa.com

85

a larger grid for the same problem used in all previous measurements. We used the default

128KB chomping size in this case. The results are shown in Table 7.5.

For application running under preallocation, about50% of the swap space usage is

reached. “dmm” has a similar swap space usage. The fact that “dmm” is 1.2 times

faster than preallocation is that the dynamic memory management causes less access to the

swapped region. Chomping has superior benefit under this case. Application with chomp-

ing is more than4 times faster than preallocation. Less memory allocation inchomping

contributed to the less usage of swap space. Because chompedvariables are allocated as

small blocks, they do not have to be constantly swapped in andout. For chomping, we

also noticed a gradual increase of the swap space usage as theprogram runs. Under an-

other measurement for chomping, we increased the computation 12 times. We observed

the swap space usage reaches around48.4% during approximately half way of the com-

putation and stays stable at this level thereafter. But the timing result scales well, actually

even slightly better than linear. This indicates the accessto swapped region does not in-

crease as the swap space usage grows. This case study also suggests a possible benefit for

chomping in the future. As the gap of cache access speed and main memory access speed

grows more towards the main memory and disk access gap, chomping could potentially

have significant impact on program performance as suggestedin this case.

www.manaraa.com

86

7.3.4 Memory Utilization vs. Communication Costs

In order to examine the trade-offs between memory utilization and parallel communi-

cation costs, we utilize a large IBM Linux Cluster for the measurements presented in this

section. Each test is conducted on 32 processors on the cluster.

Table 7.6 Mem vs. Comm under dmm on Linux Cluster

memory usage (MB) sync time
real bc points time (s) ratio(%)

comp greedy 372.352 174.464 32 3177.98 1
mem greedy 329.305 158.781 50 3179.24 1.0004

Table 7.7 Mem vs. Comm under chomping on Linux Cluster

memory usage (MB) sync time
real bc points time (s) ratio(%)

comp greedy 307.133 171.628 32 2987.95 1
mem greedy 299.743 164.721 50 2994.05 1.0020

Table 7.6 and Table 7.7 show the results for a typical large Loci application running

under implicit time method. We noticed the difference of peak memory usage to be some

what significant when running with “dmm” alone. However, thetiming results are almost

identical. In the memory greedy schedule, the synchronization points are about1.6 times

more than those in the computation greedy schedule. But the slowdown due to increased

www.manaraa.com

87

synchronization points is virtually negligible in both tables. A possible explanation is that

the application is computationally intensive, the additional communication startup costs

do not contribute significantly to the total execution time.

Table 7.8 Mem vs. Comm under dmm on Linux Cluster (a small case)

sync time
bc(MB) points time (s) ratio(%)

comp greedy 1.07 32 1269.59 1
mem greedy 0.92 52 1436.07 1.13

Table 7.9 Mem vs. Comm under chomping on Linux Cluster (a small case)

sync time
bc(MB) points time (s) ratio(%)

comp greedy 1.08 32 1155.55 1
mem greedy 1.05 52 1699.33 1.47

In order to verify our hypothesis and study the extreme case that the increased syn-

chronization points could have, we created another test. Inthis test, we selected a much

smaller problem (more than100 times smaller than the previous one), but running under

the same configuration as the previous measurement. We choose such a problem with the

hope that the parallel communication could be a major factor, if not dominant. The results

are shown in Table 7.8 and Table 7.9.

www.manaraa.com

88

In this case, we put the emphasis on the communication side because we want to

study the potential effect of increases in synchronizationfrequency in a program. On the

other side, this is a small problem, when distributed to eachprocessor, each one gets even

smaller dataset. The bean-counting peak memory is listed inthe tables only for reference

purpose to show the distinctions between computation and memory greedy scheduling. In

fact, the memory bound is dominated by the size of program instructions and internal data-

structure in this case. Note, the fact that the bean-counting peak memory for chomping is

larger than the corresponding one for “dmm” is because at this level of memory size, the

actual chomping size may be a dominant factor. We used 128KB for chomping size in this

case and did not optimize the allocation of chomping blocks for small problems.

The timing results show that the increased synchronizationpoints have a significant

effect on the total execution time for such small problems. In the schedule, the synchro-

nization points increased roughly1.6 times from computation greedy to memory greedy.

When running with chomping, the execution time increased about 1.5 times. The slow-

down for “dmm” is less than this level, but we consider it to berelatively significant.

Consider the “dmm” case in Table 7.8, the bean-counting numbers show that roughly

14% of the memory saving is achieved from computation greedy schedule to memory

greedy schedule, contrary, approximately same amount of performance improvement is

achieved from memory greedy schedule to computation greedyschedule. Of course, this

is an exaggerated case. But it does show that under certain circumstances, trade-offs do

www.manaraa.com

89

exist between memory utilization and parallel communication costs. And these trade-offs

can be utilized by the framework to maximize its flexibility.

The results in this section also suggest for computation intensive problem, the addi-

tional communication startup costs do not have noticeable effect on the application perfor-

mance. Therefore for this type of applications, the memory greedy scheduling is preferred

because it potentially saves memory without undue performance overhead.

7.4 Summary

This section presents extensive experimental results for various topics studied in this

thesis. They range from the run-time property and behavior of algorithms developed in

this thesis to various outcomes of these algorithms. Analyses and discussion of various

implications of these results are also given in this chapter.

www.manaraa.com

CHAPTER VIII

CONCLUSIONS

The study presented in this thesis proposed a high-level scheme for dynamic mem-

ory management for a declarative data-parallel programming system — the Loci frame-

work. In addition to basic memory management, the proposed scheme also tries to take

advantage of the cache memory subsystem to improve the application performance. As a

side-effect of introducing dynamic memory management, this study also presented the ex-

istence of performance trade-offs in memory utilization and parallel communication costs.

A balanced approach will require interactions between the memory and communication

scheduling strategies.

The experimental results support the primary hypotheses proposed in this thesis. Ap-

plication with dynamic memory management have a lower peak memory bound. Under

certain configurations, especially when combining with chomping technique and memory

greedy scheduling, the savings are relatively significant.Having dynamic memory man-

agement does not unduly affect the program execution time. In fact, under most cases,

the overhead is negligible. By taking advantage of the cachememory subsystem, the

chomping technique improves the application performance.The benefit depends on actual

architecture and program configurations. On the memory side, chomping not only reduces

90

www.manaraa.com

91

the theoretical memory bound, but also contributes to alleviate the memory fragmentation

problem. The dynamic memory management scheme usually achieves maximum benefit

when combining with chomping. Memory greedy scheduling reduces the memory bound

and typically helps to alleviate the memory fragmentation problem. As expected, memory

greedy scheduling also increases the amount of synchronization points in a parallel sched-

ule. But we found, in computation intensive applications, the increased communication

startup costs is typically negligible. Only in communication bounded applications, the

number of synchronization points affect the execution performance. Thus, the trade-offs

between memory utilization and parallel communication costs exist under certain circum-

stances. This suggests, only under certain circumstances,the system can take advantage

of this type of trade-offs.

This presented study also provides an infrastructure for further exploring memory sys-

tem management in declarative data-parallel programming systems and resource manage-

ment in general.

8.1 For Future Research

Some of the discussions in chapter VII already suggested possible future work. In

particular, we aim to provide a high-level management strategy in this thesis and start off

by assuming that this strategy will work smooth with low-level details. Now by looking at

some of the experimentation results, we found our assumption to be some what optimistic.

It is time now to look back some of these issues. In particular, as shown in chapter VII,

www.manaraa.com

92

we have two main issues: the dubious memory leak problem on SGI, and the irregular

timing behavior on Linux. Identifying and solving these problems can greatly improve the

practicability of the techniques developed in this thesis.

Second, the performance improvements by chomping is below our expectation. After

measurements in chapter VII, we created a fictitious Loci program that is highly opti-

mized for chomping. We found the performance improvements to be quite significant. We

achieved1.5 times speedup on Linux and5 times speedup on the SGI. Although this is an

exaggerated case and is unlikely to appear in real design, itsuggests there are still rooms

for improvements. In particular, we want to investigate theeffect to chomping perfor-

mance by using different scheduling algorithms that are optimized for cache performance.

By this time, the chomping graph is scheduled using the default computation greedy algo-

rithm. This may not be the best choice for scheduling chomping graph because it is not

aware of preserving the cache benefit. In other words, it could schedule things that destroy

the cache benefit. Thus, we want to investigate the effect of acache-aware scheduling

algorithm.

www.manaraa.com

REFERENCES

[1] A. Aiken, M. Faehndrich, and R. Levien, “Better Static Memory Management: Im-
provements to Region-Based Analysis of Higher-Order Languages,” Proceedings:
SIGPLAN Conference on Programming Language Design and Implementation, San
Diego, California, 1995, pp. 174–185.

[2] G. Attardi, T. Flagella, and P. Iglio, “A customisable memory management frame-
work for C++,” Software Practice and Experience, vol. 28, no. 11, 1998, pp. 1143–
1183.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management
of parallelism in object-oriented numerical software libraries,” Modern Software
Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.,
Birkhauser Press, 1997, pp. 163–202.

[4] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing High-Performance
Memory Allocators,” Proceedings: SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Snowbird, Utah, 2001.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-Oblivious Al-
gorithms,” Proceedings: The 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, New York, NY, 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, Reading, Massachusetts,
1995.

[7] D. Gay and A. Aiken, “Memory Management with Explicit Regions,” Proceed-
ings: SIGPLAN Conference on Programming Language Design and Implementation,
Montreal, Canada, 1998, pp. 313–323.

[8] D. Gay and A. Aiken, “Language Support for Regions,”Proceedings: SIGPLAN
Conference on Programming Language Design and Implementation, 2001, pp. 70–
80.

[9] D. Grunwald, B. Zorn, and R. Henderson, “Improving the Cache Locality of Memory
Allocation,” Proceedings: SIGPLAN Conference on Programming Language Design
and Implementation, Albuquerque, New Mexico, 1993, pp. 177–186.

93

www.manaraa.com

94

[10] S. Karmesin, J. Crotinger, J. Cummings, S. Haney, W. J. Humphrey, J. Reynders,
S. Smith, and T. Williams, “Array Design and Expression Evaluation in POOMA II,”
Proceedings: International Symposium on Computing in Object-Oriented Parallel
Environments (ISCOPE’98), Santa Fe, New Mexico, 1998, Springer-Verlag, pp. 231–
238.

[11] A. LaMarca and R. E. Ladner, “The Influence of Caches on the Performance of
Sorting,” Journal of Algorithms, vol. 31, 1999, pp. 66–104.

[12] E. A. Luke, “Loci: A Deductive Framework for Graph-Based Algorithms,” Pro-
ceedings: Third International Symposium on Computing in Object-Oriented Parallel
Environments, San Fransisco, California, 1999, Springer-Verlag, pp. 142–153.

[13] N. Mitchell, L. Carter, and J. Ferrante, “Localizing Non-affine Array References,”
Proceedings: Parallel Architectures and Compilation Techniques ’99, Newport
Beach, California, 1999, IEEE Computer Society and IFIP Working Group 10.3.

[14] J. G. Siek and A. Lumsdaine, “The Matrix Template Library: A Generic Program-
ming Approach to High Performance Numerical Linear Algebra,” Proceedings: In-
ternational Symposium on Computing in Object-Oriented Parallel Environments (IS-
COPE’98), Santa Fe, New Mexico, 1998, Springer-Verlag, pp. 59–70.

[15] T. Sterling, D. Becker, D. Savarse, J. Dorband, U. Ranawak, and C. Packer, “Be-
owulf: A Parallel Workstation for Scientific Computation,”Proceedings: The 1995
International Conference on Parallel Processing, 1995, pp. 11–14.

[16] M. Tofte and L. Birkedal, “A Region Inference Algorithm,” Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 20, no. 5, July 1998, pp. 734–767.

[17] T. L. Veldhuizen, “Arrays in Blitz++,” Proceedings: International Symposium on
Computing in Object-Oriented Parallel Environments (ISCOPE’98), Santa Fe, New
Mexico, 1998, Springer-Verlag, pp. 223–230.

[18] P. R. Wilson, “Uniprocessor Garbage Collection Techniques,”Proceedings: Interna-
tional Workshop on Memory Management, St. Malo, France, 1992, Springer-Verlag.

[19] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic storage allocation:
A survey and critical review,” Proceedings: International Workshop on Memory
Management, Kinross, Scotland, 1995, Springer-Verlag.

	Dynamic memory management for the Loci framework
	Recommended Citation

	thesis.dvi

